Overview

Dataset statistics

Number of variables50
Number of observations50133
Missing cells71154
Missing cells (%)2.8%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory88.7 MiB
Average record size in memory1.8 KiB

Variable types

Numeric15
Categorical34
DateTime1

Alerts

host_acceptance_rate has a high cardinality: 100 distinct values High cardinality
host_neighbourhood has a high cardinality: 235 distinct values High cardinality
neighbourhood has a high cardinality: 220 distinct values High cardinality
host_listings_count is highly correlated with host_total_listings_count and 1 other fieldsHigh correlation
host_total_listings_count is highly correlated with host_listings_count and 1 other fieldsHigh correlation
accommodates is highly correlated with bedrooms and 2 other fieldsHigh correlation
bedrooms is highly correlated with accommodates and 1 other fieldsHigh correlation
beds is highly correlated with accommodates and 1 other fieldsHigh correlation
price is highly correlated with accommodatesHigh correlation
maximum_nights is highly correlated with long_term_staysHigh correlation
calculated_host_listings_count is highly correlated with host_listings_count and 1 other fieldsHigh correlation
calculated_host_listings_count_entire_homes is highly correlated with calculated_host_listings_count_private_roomsHigh correlation
calculated_host_listings_count_private_rooms is highly correlated with calculated_host_listings_count_entire_homesHigh correlation
bed_linen is highly correlated with coffee_machineHigh correlation
coffee_machine is highly correlated with bed_linen and 1 other fieldsHigh correlation
cooking_basics is highly correlated with coffee_machineHigh correlation
long_term_stays is highly correlated with maximum_nightsHigh correlation
host_listings_count is highly correlated with host_total_listings_countHigh correlation
host_total_listings_count is highly correlated with host_listings_countHigh correlation
accommodates is highly correlated with bedrooms and 1 other fieldsHigh correlation
bedrooms is highly correlated with accommodates and 1 other fieldsHigh correlation
beds is highly correlated with accommodates and 1 other fieldsHigh correlation
calculated_host_listings_count is highly correlated with calculated_host_listings_count_entire_homesHigh correlation
calculated_host_listings_count_entire_homes is highly correlated with calculated_host_listings_countHigh correlation
bed_linen is highly correlated with coffee_machineHigh correlation
coffee_machine is highly correlated with bed_linen and 1 other fieldsHigh correlation
cooking_basics is highly correlated with coffee_machineHigh correlation
id is highly correlated with host_is_superhost and 14 other fieldsHigh correlation
host_is_superhost is highly correlated with id and 17 other fieldsHigh correlation
host_listings_count is highly correlated with host_identity_verified and 13 other fieldsHigh correlation
host_total_listings_count is highly correlated with host_identity_verified and 13 other fieldsHigh correlation
host_identity_verified is highly correlated with id and 20 other fieldsHigh correlation
accommodates is highly correlated with number_of_reviews_l30d and 10 other fieldsHigh correlation
bedrooms is highly correlated with id and 17 other fieldsHigh correlation
beds is highly correlated with number_of_reviews_l30d and 10 other fieldsHigh correlation
price is highly correlated with number_of_reviews_l30d and 9 other fieldsHigh correlation
minimum_nights is highly correlated with number_of_reviews_l30d and 16 other fieldsHigh correlation
maximum_nights is highly correlated with number_of_reviews_l30d and 13 other fieldsHigh correlation
availability_90 is highly correlated with number_of_reviews_l30d and 10 other fieldsHigh correlation
number_of_reviews is highly correlated with number_of_reviews_l30d and 12 other fieldsHigh correlation
number_of_reviews_l30d is highly correlated with id and 24 other fieldsHigh correlation
instant_bookable is highly correlated with host_is_superhost and 20 other fieldsHigh correlation
calculated_host_listings_count is highly correlated with host_is_superhost and 15 other fieldsHigh correlation
calculated_host_listings_count_entire_homes is highly correlated with calculated_host_listings_count_private_rooms and 9 other fieldsHigh correlation
calculated_host_listings_count_private_rooms is highly correlated with id and 29 other fieldsHigh correlation
air_conditioning is highly correlated with id and 25 other fieldsHigh correlation
bed_linen is highly correlated with host_is_superhost and 11 other fieldsHigh correlation
breakfast is highly correlated with id and 29 other fieldsHigh correlation
tv is highly correlated with id and 18 other fieldsHigh correlation
coffee_machine is highly correlated with host_identity_verified and 10 other fieldsHigh correlation
cooking_basics is highly correlated with minimum_nights and 10 other fieldsHigh correlation
white_goods is highly correlated with id and 28 other fieldsHigh correlation
elevator is highly correlated with id and 24 other fieldsHigh correlation
parking is highly correlated with id and 25 other fieldsHigh correlation
host_greeting is highly correlated with id and 29 other fieldsHigh correlation
internet is highly correlated with id and 29 other fieldsHigh correlation
long_term_stays is highly correlated with id and 29 other fieldsHigh correlation
private_entrance is highly correlated with id and 29 other fieldsHigh correlation
review_scores_checkin is highly correlated with review_scores_accuracy and 7 other fieldsHigh correlation
host_acceptance_rate is highly correlated with instant_bookableHigh correlation
instant_bookable is highly correlated with host_acceptance_rateHigh correlation
review_scores_accuracy is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
bed_linen is highly correlated with coffee_machineHigh correlation
host_response_rate is highly correlated with host_response_timeHigh correlation
review_scores_rating is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
coffee_machine is highly correlated with bed_linen and 1 other fieldsHigh correlation
time_since_last_review is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
review_scores_location is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
property_type is highly correlated with room_typeHigh correlation
bathrooms_text is highly correlated with room_typeHigh correlation
review_scores_communication is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
review_scores_value is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
host_response_time is highly correlated with host_response_rateHigh correlation
cooking_basics is highly correlated with coffee_machineHigh correlation
time_since_first_review is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
review_scores_cleanliness is highly correlated with review_scores_checkin and 7 other fieldsHigh correlation
room_type is highly correlated with property_type and 1 other fieldsHigh correlation
id is highly correlated with time_since_first_reviewHigh correlation
host_response_time is highly correlated with host_response_rate and 2 other fieldsHigh correlation
host_response_rate is highly correlated with host_response_time and 4 other fieldsHigh correlation
host_acceptance_rate is highly correlated with host_response_time and 7 other fieldsHigh correlation
host_listings_count is highly correlated with host_response_rate and 4 other fieldsHigh correlation
host_total_listings_count is highly correlated with host_response_rate and 4 other fieldsHigh correlation
property_type is highly correlated with room_type and 3 other fieldsHigh correlation
room_type is highly correlated with property_type and 2 other fieldsHigh correlation
accommodates is highly correlated with bathrooms_text and 1 other fieldsHigh correlation
bathrooms_text is highly correlated with property_type and 6 other fieldsHigh correlation
bedrooms is highly correlated with bathrooms_text and 1 other fieldsHigh correlation
beds is highly correlated with bathrooms_text and 1 other fieldsHigh correlation
price is highly correlated with accommodates and 1 other fieldsHigh correlation
availability_90 is highly correlated with host_response_time and 1 other fieldsHigh correlation
number_of_reviews is highly correlated with number_of_reviews_l30dHigh correlation
number_of_reviews_l30d is highly correlated with number_of_reviewsHigh correlation
review_scores_rating is highly correlated with review_scores_accuracy and 7 other fieldsHigh correlation
review_scores_accuracy is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
review_scores_cleanliness is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
review_scores_checkin is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
review_scores_communication is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
review_scores_location is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
review_scores_value is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
instant_bookable is highly correlated with host_acceptance_rateHigh correlation
calculated_host_listings_count is highly correlated with host_acceptance_rate and 3 other fieldsHigh correlation
calculated_host_listings_count_entire_homes is highly correlated with host_acceptance_rate and 3 other fieldsHigh correlation
calculated_host_listings_count_private_rooms is highly correlated with host_acceptance_rate and 2 other fieldsHigh correlation
air_conditioning is highly correlated with property_type and 1 other fieldsHigh correlation
bed_linen is highly correlated with coffee_machine and 1 other fieldsHigh correlation
coffee_machine is highly correlated with bed_linen and 2 other fieldsHigh correlation
cooking_basics is highly correlated with bed_linen and 1 other fieldsHigh correlation
parking is highly correlated with coffee_machineHigh correlation
time_since_first_review is highly correlated with id and 8 other fieldsHigh correlation
time_since_last_review is highly correlated with review_scores_rating and 7 other fieldsHigh correlation
host_acceptance_rate has 25900 (51.7%) missing values Missing
host_neighbourhood has 13528 (27.0%) missing values Missing
neighbourhood has 20064 (40.0%) missing values Missing
first_review has 11423 (22.8%) missing values Missing
bedrooms is highly skewed (γ1 = 25.28348159) Skewed
beds is highly skewed (γ1 = 22.19124469) Skewed
maximum_nights is highly skewed (γ1 = 223.8081539) Skewed
number_of_reviews_l30d is highly skewed (γ1 = 50.49864021) Skewed
id has unique values Unique
host_listings_count has 8245 (16.4%) zeros Zeros
host_total_listings_count has 8245 (16.4%) zeros Zeros
beds has 1333 (2.7%) zeros Zeros
availability_90 has 28647 (57.1%) zeros Zeros
number_of_reviews has 11423 (22.8%) zeros Zeros
number_of_reviews_l30d has 41484 (82.7%) zeros Zeros
calculated_host_listings_count_entire_homes has 7846 (15.7%) zeros Zeros
calculated_host_listings_count_private_rooms has 41509 (82.8%) zeros Zeros

Reproduction

Analysis started2021-12-27 01:51:59.132715
Analysis finished2021-12-27 02:02:11.397551
Duration10 minutes and 12.26 seconds
Software versionpandas-profiling v3.1.0
Download configurationconfig.json

Variables

id
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
UNIQUE

Distinct50133
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean25941992.23
Minimum5396
Maximum52166001
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:11.459293image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum5396
5-th percentile2395069.8
Q112146136
median25444250
Q340048250
95-th percentile50534752
Maximum52166001
Range52160605
Interquartile range (IQR)27902114

Descriptive statistics

Standard deviation15666125.14
Coefficient of variation (CV)0.6038905955
Kurtosis-1.285013236
Mean25941992.23
Median Absolute Deviation (MAD)13993465
Skewness0.03211710919
Sum1.300549896 × 1012
Variance2.454274767 × 1014
MonotonicityStrictly increasing
2021-12-26T21:02:11.539524image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
53961
 
< 0.1%
357409701
 
< 0.1%
357139541
 
< 0.1%
357222161
 
< 0.1%
357237961
 
< 0.1%
357254551
 
< 0.1%
357281691
 
< 0.1%
357301771
 
< 0.1%
357309131
 
< 0.1%
357315661
 
< 0.1%
Other values (50123)50123
> 99.9%
ValueCountFrequency (%)
53961
< 0.1%
73971
< 0.1%
79641
< 0.1%
93591
< 0.1%
99521
< 0.1%
105861
< 0.1%
105881
< 0.1%
109171
< 0.1%
112131
< 0.1%
112651
< 0.1%
ValueCountFrequency (%)
521660011
< 0.1%
521650111
< 0.1%
521633161
< 0.1%
521626741
< 0.1%
521623811
< 0.1%
521611271
< 0.1%
521610331
< 0.1%
521607411
< 0.1%
521599581
< 0.1%
521597651
< 0.1%

host_response_time
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct5
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.3 MiB
unknown
26839 
within an hour
12539 
within a few hours
4977 
within a day
4264 
a few days or more
 
1514

Length

Max length18
Median length7
Mean length10.60030319
Min length7

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowwithin an hour
2nd rowwithin an hour
3rd rowwithin a day
4th rowwithin an hour
5th rowwithin an hour

Common Values

ValueCountFrequency (%)
unknown26839
53.5%
within an hour12539
25.0%
within a few hours4977
 
9.9%
within a day4264
 
8.5%
a few days or more1514
 
3.0%

Length

2021-12-26T21:02:11.613455image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:11.655385image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
unknown26839
25.6%
within21780
20.8%
an12539
12.0%
hour12539
12.0%
a10755
10.3%
few6491
 
6.2%
hours4977
 
4.8%
day4264
 
4.1%
days1514
 
1.4%
or1514
 
1.4%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_response_rate
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct5
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.3 MiB
unknown
26839 
100%
14460 
50-89%
3735 
90-99%
3145 
0-49%
 
1954

Length

Max length7
Median length7
Mean length5.919514093
Min length4

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row100%
2nd row100%
3rd row50-89%
4th row100%
5th row100%

Common Values

ValueCountFrequency (%)
unknown26839
53.5%
100%14460
28.8%
50-89%3735
 
7.5%
90-99%3145
 
6.3%
0-49%1954
 
3.9%

Length

2021-12-26T21:02:11.715240image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:11.757688image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
unknown26839
53.5%
10014460
28.8%
50-893735
 
7.5%
90-993145
 
6.3%
0-491954
 
3.9%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_acceptance_rate
Categorical

HIGH CARDINALITY
HIGH CORRELATION
HIGH CORRELATION
MISSING

Distinct100
Distinct (%)0.4%
Missing25900
Missing (%)51.7%
Memory size2.2 MiB
100%
8446 
0%
1990 
98%
1356 
99%
 
948
50%
 
820
Other values (95)
10673 

Length

Max length4
Median length3
Mean length3.264845459
Min length2

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st row89%
2nd row80%
3rd row0%
4th row20%
5th row100%

Common Values

ValueCountFrequency (%)
100%8446
 
16.8%
0%1990
 
4.0%
98%1356
 
2.7%
99%948
 
1.9%
50%820
 
1.6%
67%600
 
1.2%
97%580
 
1.2%
96%550
 
1.1%
93%460
 
0.9%
95%445
 
0.9%
Other values (90)8038
 
16.0%
(Missing)25900
51.7%

Length

2021-12-26T21:02:11.816753image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
1008446
34.9%
01990
 
8.2%
981356
 
5.6%
99948
 
3.9%
50820
 
3.4%
67600
 
2.5%
97580
 
2.4%
96550
 
2.3%
93460
 
1.9%
95445
 
1.8%
Other values (90)8038
33.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_is_superhost
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing34
Missing (%)0.1%
Memory size2.9 MiB
0.0
43197 
1.0
6902 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.043197
86.2%
1.06902
 
13.8%
(Missing)34
 
0.1%

Length

2021-12-26T21:02:11.880643image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:11.918243image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.043197
86.2%
1.06902
 
13.8%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_neighbourhood
Categorical

HIGH CARDINALITY
MISSING

Distinct235
Distinct (%)0.6%
Missing13528
Missing (%)27.0%
Memory size3.7 MiB
Montmartre
 
2233
Le Marais
 
1921
République
 
1868
Buttes-Chaumont - Belleville
 
1803
XI Arrondissement
 
1733
Other values (230)
27047 

Length

Max length36
Median length12
Mean length16.33364294
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique129 ?
Unique (%)0.4%

Sample

1st rowSaint-Paul - Ile Saint-Louis
2nd rowLe Marais
3rd rowGare du Nord - Gare de I'Est
4th rowChâtelet - Les Halles - Beaubourg
5th rowRépublique

Common Values

ValueCountFrequency (%)
Montmartre2233
 
4.5%
Le Marais1921
 
3.8%
République1868
 
3.7%
Buttes-Chaumont - Belleville1803
 
3.6%
XI Arrondissement1733
 
3.5%
Châtelet - Les Halles - Beaubourg1503
 
3.0%
Batignolles1285
 
2.6%
Bastille1280
 
2.6%
Alésia1086
 
2.2%
Saint-Germain-des-Prés - Odéon1065
 
2.1%
Other values (225)20828
41.5%
(Missing)13528
27.0%

Length

2021-12-26T21:02:11.968614image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
12918
 
14.9%
arrondissement3678
 
4.2%
de3590
 
4.1%
gare2321
 
2.7%
montmartre2233
 
2.6%
le1932
 
2.2%
marais1921
 
2.2%
république1868
 
2.2%
belleville1803
 
2.1%
buttes-chaumont1803
 
2.1%
Other values (321)52650
60.7%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_listings_count
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct84
Distinct (%)0.2%
Missing34
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean13.0560091
Minimum0
Maximum1105
Zeros8245
Zeros (%)16.4%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:12.042112image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median1
Q32
95-th percentile46
Maximum1105
Range1105
Interquartile range (IQR)1

Descriptive statistics

Standard deviation79.41637975
Coefficient of variation (CV)6.082745434
Kurtosis155.8080035
Mean13.0560091
Median Absolute Deviation (MAD)0
Skewness11.92410219
Sum654093
Variance6306.961372
MonotonicityNot monotonic
2021-12-26T21:02:12.111357image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
127341
54.5%
08245
 
16.4%
25063
 
10.1%
31595
 
3.2%
4995
 
2.0%
5723
 
1.4%
6453
 
0.9%
7412
 
0.8%
8295
 
0.6%
9254
 
0.5%
Other values (74)4723
 
9.4%
ValueCountFrequency (%)
08245
 
16.4%
127341
54.5%
25063
 
10.1%
31595
 
3.2%
4995
 
2.0%
5723
 
1.4%
6453
 
0.9%
7412
 
0.8%
8295
 
0.6%
9254
 
0.5%
ValueCountFrequency (%)
1105209
0.4%
85836
 
0.1%
30913
 
< 0.1%
2738
 
< 0.1%
2465
 
< 0.1%
209173
0.3%
2081
 
< 0.1%
192193
0.4%
1881
 
< 0.1%
1863
 
< 0.1%

host_total_listings_count
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct84
Distinct (%)0.2%
Missing34
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean13.0560091
Minimum0
Maximum1105
Zeros8245
Zeros (%)16.4%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:12.185756image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median1
Q32
95-th percentile46
Maximum1105
Range1105
Interquartile range (IQR)1

Descriptive statistics

Standard deviation79.41637975
Coefficient of variation (CV)6.082745434
Kurtosis155.8080035
Mean13.0560091
Median Absolute Deviation (MAD)0
Skewness11.92410219
Sum654093
Variance6306.961372
MonotonicityNot monotonic
2021-12-26T21:02:12.255585image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
127341
54.5%
08245
 
16.4%
25063
 
10.1%
31595
 
3.2%
4995
 
2.0%
5723
 
1.4%
6453
 
0.9%
7412
 
0.8%
8295
 
0.6%
9254
 
0.5%
Other values (74)4723
 
9.4%
ValueCountFrequency (%)
08245
 
16.4%
127341
54.5%
25063
 
10.1%
31595
 
3.2%
4995
 
2.0%
5723
 
1.4%
6453
 
0.9%
7412
 
0.8%
8295
 
0.6%
9254
 
0.5%
ValueCountFrequency (%)
1105209
0.4%
85836
 
0.1%
30913
 
< 0.1%
2738
 
< 0.1%
2465
 
< 0.1%
209173
0.3%
2081
 
< 0.1%
192193
0.4%
1881
 
< 0.1%
1863
 
< 0.1%

host_identity_verified
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing34
Missing (%)0.1%
Memory size2.9 MiB
1.0
39928 
0.0
10171 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row1.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.039928
79.6%
0.010171
 
20.3%
(Missing)34
 
0.1%

Length

2021-12-26T21:02:12.320326image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:12.356960image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
1.039928
79.7%
0.010171
 
20.3%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

neighbourhood
Categorical

HIGH CARDINALITY
MISSING

Distinct220
Distinct (%)0.7%
Missing20064
Missing (%)40.0%
Memory size4.3 MiB
Paris, Île-de-France, France
27650 
Paris, France
 
655
Paris, IDF, France
 
304
Paris, Île-de-France Region, France
 
219
Paris, Ile-de-France, France
 
62
Other values (215)
 
1179

Length

Max length48
Median length28
Mean length27.8512754
Min length6

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique96 ?
Unique (%)0.3%

Sample

1st rowParis, Ile-de-France, France
2nd rowParis, Ile-de-France, France
3rd rowParis, Ile-de-France, France
4th rowParis, Ile-de-France, France
5th rowParis, Île-de-France, France

Common Values

ValueCountFrequency (%)
Paris, Île-de-France, France27650
55.2%
Paris, France655
 
1.3%
Paris, IDF, France304
 
0.6%
Paris, Île-de-France Region, France219
 
0.4%
Paris, Ile-de-France, France62
 
0.1%
Paris-18E-Arrondissement, Île-de-France, France42
 
0.1%
Paris-15E-Arrondissement, Île-de-France, France39
 
0.1%
Paris, Paris province, France36
 
0.1%
Paris-20E-Arrondissement, Île-de-France, France35
 
0.1%
Paris-19E-Arrondissement, Île-de-France, France31
 
0.1%
Other values (210)996
 
2.0%
(Missing)20064
40.0%

Length

2021-12-26T21:02:12.406414image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
france30119
33.4%
paris29502
32.8%
île-de-france28552
31.7%
idf313
 
0.3%
region221
 
0.2%
arrondissement67
 
0.1%
ile-de-france63
 
0.1%
63
 
0.1%
paris-18e-arrondissement42
 
< 0.1%
paris-15e-arrondissement39
 
< 0.1%
Other values (130)1089
 
1.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

Distinct20
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.1 MiB
Buttes-Montmartre
5355 
Popincourt
4590 
Vaugirard
3773 
Entrepôt
3607 
Batignolles-Monceau
3211 
Other values (15)
29597 

Length

Max length19
Median length10
Mean length10.49685836
Min length5

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowHôtel-de-Ville
2nd rowHôtel-de-Ville
3rd rowOpéra
4th rowLouvre
5th rowPopincourt

Common Values

ValueCountFrequency (%)
Buttes-Montmartre5355
 
10.7%
Popincourt4590
 
9.2%
Vaugirard3773
 
7.5%
Entrepôt3607
 
7.2%
Batignolles-Monceau3211
 
6.4%
Buttes-Chaumont2763
 
5.5%
Ménilmontant2753
 
5.5%
Opéra2582
 
5.2%
Passy2509
 
5.0%
Temple2330
 
4.6%
Other values (10)16660
33.2%

Length

2021-12-26T21:02:12.611564image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
buttes-montmartre5355
 
10.7%
popincourt4590
 
9.2%
vaugirard3773
 
7.5%
entrepôt3607
 
7.2%
batignolles-monceau3211
 
6.4%
buttes-chaumont2763
 
5.5%
ménilmontant2753
 
5.5%
opéra2582
 
5.2%
passy2509
 
5.0%
temple2330
 
4.6%
Other values (10)16660
33.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

property_type
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.3 MiB
House
38721 
Apartment
7751 
Other
 
2993
Hotel
 
668

Length

Max length9
Median length5
Mean length5.618434963
Min length5

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowHouse
2nd rowHouse
3rd rowHouse
4th rowHouse
5th rowHouse

Common Values

ValueCountFrequency (%)
House38721
77.2%
Apartment7751
 
15.5%
Other2993
 
6.0%
Hotel668
 
1.3%

Length

2021-12-26T21:02:12.679455image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:12.725919image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
house38721
77.2%
apartment7751
 
15.5%
other2993
 
6.0%
hotel668
 
1.3%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

room_type
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size3.9 MiB
Entire home/apt
41329 
Private room
7250 
Hotel room
 
1209
Shared room
 
345

Length

Max length15
Median length15
Mean length14.41804799
Min length10

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowEntire home/apt
2nd rowEntire home/apt
3rd rowEntire home/apt
4th rowEntire home/apt
5th rowEntire home/apt

Common Values

ValueCountFrequency (%)
Entire home/apt41329
82.4%
Private room7250
 
14.5%
Hotel room1209
 
2.4%
Shared room345
 
0.7%

Length

2021-12-26T21:02:12.778682image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:12.820507image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
entire41329
41.2%
home/apt41329
41.2%
room8804
 
8.8%
private7250
 
7.2%
hotel1209
 
1.2%
shared345
 
0.3%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

accommodates
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct17
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean3.05301897
Minimum0
Maximum16
Zeros53
Zeros (%)0.1%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:12.867921image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q12
median2
Q34
95-th percentile6
Maximum16
Range16
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.637042015
Coefficient of variation (CV)0.5362043378
Kurtosis7.131986549
Mean3.05301897
Median Absolute Deviation (MAD)1
Skewness1.962500007
Sum153057
Variance2.679906558
MonotonicityNot monotonic
2021-12-26T21:02:12.924527image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=17)
ValueCountFrequency (%)
224428
48.7%
412159
24.3%
34616
 
9.2%
62854
 
5.7%
12730
 
5.4%
51841
 
3.7%
8656
 
1.3%
7361
 
0.7%
10178
 
0.4%
1273
 
0.1%
Other values (7)237
 
0.5%
ValueCountFrequency (%)
053
 
0.1%
12730
 
5.4%
224428
48.7%
34616
 
9.2%
412159
24.3%
51841
 
3.7%
62854
 
5.7%
7361
 
0.7%
8656
 
1.3%
966
 
0.1%
ValueCountFrequency (%)
1627
 
0.1%
1527
 
0.1%
1422
 
< 0.1%
1313
 
< 0.1%
1273
 
0.1%
1129
 
0.1%
10178
 
0.4%
966
 
0.1%
8656
1.3%
7361
0.7%

bathrooms_text
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct31
Distinct (%)0.1%
Missing103
Missing (%)0.2%
Memory size3.3 MiB
1 bath
37301 
1 shared bath
 
3231
2 baths
 
2879
1.5 baths
 
2640
1 private bath
 
2084
Other values (26)
 
1895

Length

Max length17
Median length6
Mean length7.153467919
Min length6

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique4 ?
Unique (%)< 0.1%

Sample

1st row1 bath
2nd row1 bath
3rd row1 bath
4th row1 bath
5th row1 bath

Common Values

ValueCountFrequency (%)
1 bath37301
74.4%
1 shared bath3231
 
6.4%
2 baths2879
 
5.7%
1.5 baths2640
 
5.3%
1 private bath2084
 
4.2%
2.5 baths586
 
1.2%
3 baths357
 
0.7%
1.5 shared baths281
 
0.6%
Half-bath199
 
0.4%
0 baths79
 
0.2%
Other values (21)393
 
0.8%
(Missing)103
 
0.2%

Length

2021-12-26T21:02:12.998388image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
142616
40.4%
bath42616
40.4%
baths7163
 
6.8%
shared3680
 
3.5%
22955
 
2.8%
1.52921
 
2.8%
private2098
 
2.0%
2.5600
 
0.6%
3360
 
0.3%
half-bath251
 
0.2%
Other values (14)327
 
0.3%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

bedrooms
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
SKEWED

Distinct15
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.303712126
Minimum1
Maximum50
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.074589image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11
median1
Q31
95-th percentile3
Maximum50
Range49
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.9287606415
Coefficient of variation (CV)0.7123970263
Kurtosis1200.511608
Mean1.303712126
Median Absolute Deviation (MAD)0
Skewness25.28348159
Sum65359
Variance0.8625963292
MonotonicityNot monotonic
2021-12-26T21:02:13.134354image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=15)
ValueCountFrequency (%)
139539
78.9%
27446
 
14.9%
32361
 
4.7%
4610
 
1.2%
5129
 
0.3%
626
 
0.1%
77
 
< 0.1%
507
 
< 0.1%
332
 
< 0.1%
381
 
< 0.1%
Other values (5)5
 
< 0.1%
ValueCountFrequency (%)
139539
78.9%
27446
 
14.9%
32361
 
4.7%
4610
 
1.2%
5129
 
0.3%
626
 
0.1%
77
 
< 0.1%
81
 
< 0.1%
101
 
< 0.1%
231
 
< 0.1%
ValueCountFrequency (%)
507
 
< 0.1%
381
 
< 0.1%
332
 
< 0.1%
311
 
< 0.1%
291
 
< 0.1%
231
 
< 0.1%
101
 
< 0.1%
81
 
< 0.1%
77
 
< 0.1%
626
0.1%

beds
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
SKEWED
ZEROS

Distinct23
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.680968623
Minimum0
Maximum90
Zeros1333
Zeros (%)2.7%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.194853image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q11
median1
Q32
95-th percentile4
Maximum90
Range90
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.377627634
Coefficient of variation (CV)0.8195439314
Kurtosis1236.985567
Mean1.680968623
Median Absolute Deviation (MAD)0
Skewness22.19124469
Sum84272
Variance1.897857898
MonotonicityNot monotonic
2021-12-26T21:02:13.249668image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=23)
ValueCountFrequency (%)
126949
53.8%
214201
28.3%
34505
 
9.0%
41858
 
3.7%
01333
 
2.7%
5721
 
1.4%
6307
 
0.6%
7107
 
0.2%
878
 
0.2%
938
 
0.1%
Other values (13)36
 
0.1%
ValueCountFrequency (%)
01333
 
2.7%
126949
53.8%
214201
28.3%
34505
 
9.0%
41858
 
3.7%
5721
 
1.4%
6307
 
0.6%
7107
 
0.2%
878
 
0.2%
938
 
0.1%
ValueCountFrequency (%)
901
< 0.1%
851
< 0.1%
831
< 0.1%
791
< 0.1%
771
< 0.1%
401
< 0.1%
182
< 0.1%
161
< 0.1%
141
< 0.1%
132
< 0.1%

price
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct742
Distinct (%)1.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean120.9666088
Minimum10
Maximum1000
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.316823image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum10
5-th percentile36
Q160
median88
Q3135
95-th percentile314
Maximum1000
Range990
Interquartile range (IQR)75

Descriptive statistics

Standard deviation117.671671
Coefficient of variation (CV)0.9727615923
Kurtosis21.44778292
Mean120.9666088
Median Absolute Deviation (MAD)32
Skewness3.983086664
Sum6064419
Variance13846.62216
MonotonicityNot monotonic
2021-12-26T21:02:13.389655image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
802133
 
4.3%
602066
 
4.1%
702010
 
4.0%
501903
 
3.8%
1001804
 
3.6%
901735
 
3.5%
651305
 
2.6%
751273
 
2.5%
1201229
 
2.5%
551081
 
2.2%
Other values (732)33594
67.0%
ValueCountFrequency (%)
1088
0.2%
112
 
< 0.1%
124
 
< 0.1%
133
 
< 0.1%
142
 
< 0.1%
1518
 
< 0.1%
166
 
< 0.1%
1711
 
< 0.1%
1819
 
< 0.1%
1916
 
< 0.1%
ValueCountFrequency (%)
1000237
0.5%
99910
 
< 0.1%
9961
 
< 0.1%
9951
 
< 0.1%
9921
 
< 0.1%
9903
 
< 0.1%
9811
 
< 0.1%
9781
 
< 0.1%
9761
 
< 0.1%
9601
 
< 0.1%

minimum_nights
Real number (ℝ≥0)

HIGH CORRELATION

Distinct84
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean112.9302256
Minimum1
Maximum9999
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.465817image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q12
median4
Q3365
95-th percentile365
Maximum9999
Range9998
Interquartile range (IQR)363

Descriptive statistics

Standard deviation170.3706112
Coefficient of variation (CV)1.508636066
Kurtosis224.9114029
Mean112.9302256
Median Absolute Deviation (MAD)3
Skewness4.713455745
Sum5661531
Variance29026.14518
MonotonicityNot monotonic
2021-12-26T21:02:13.540369image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
36514781
29.5%
19414
18.8%
28547
17.0%
36037
12.0%
42824
 
5.6%
302550
 
5.1%
52216
 
4.4%
71091
 
2.2%
6740
 
1.5%
10270
 
0.5%
Other values (74)1663
 
3.3%
ValueCountFrequency (%)
19414
18.8%
28547
17.0%
36037
12.0%
42824
 
5.6%
52216
 
4.4%
6740
 
1.5%
71091
 
2.2%
897
 
0.2%
941
 
0.1%
10270
 
0.5%
ValueCountFrequency (%)
99991
 
< 0.1%
11241
 
< 0.1%
11201
 
< 0.1%
11121
 
< 0.1%
11001
 
< 0.1%
10011
 
< 0.1%
10004
< 0.1%
9992
< 0.1%
7301
 
< 0.1%
5231
 
< 0.1%

maximum_nights
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
SKEWED

Distinct234
Distinct (%)0.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean999.9625197
Minimum1
Maximum10000000
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.619153image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile10
Q1240
median1125
Q31125
95-th percentile1125
Maximum10000000
Range9999999
Interquartile range (IQR)885

Descriptive statistics

Standard deviation44664.8205
Coefficient of variation (CV)44.66649461
Kurtosis50104.28367
Mean999.9625197
Median Absolute Deviation (MAD)0
Skewness223.8081539
Sum50131121
Variance1994946190
MonotonicityNot monotonic
2021-12-26T21:02:13.694696image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
112533148
66.1%
3652561
 
5.1%
302127
 
4.2%
151016
 
2.0%
7827
 
1.6%
60701
 
1.4%
10672
 
1.3%
90591
 
1.2%
1124548
 
1.1%
20534
 
1.1%
Other values (224)7408
 
14.8%
ValueCountFrequency (%)
157
 
0.1%
2115
 
0.2%
3193
 
0.4%
4198
 
0.4%
5317
 
0.6%
6342
0.7%
7827
1.6%
8240
 
0.5%
981
 
0.2%
10672
1.3%
ValueCountFrequency (%)
100000001
 
< 0.1%
999991
 
< 0.1%
855541
 
< 0.1%
30001
 
< 0.1%
18001
 
< 0.1%
15001
 
< 0.1%
12001
 
< 0.1%
11262
 
< 0.1%
112533148
66.1%
1124548
 
1.1%

availability_90
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct91
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean23.03404943
Minimum0
Maximum90
Zeros28647
Zeros (%)57.1%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.771764image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q350
95-th percentile89
Maximum90
Range90
Interquartile range (IQR)50

Descriptive statistics

Standard deviation33.14274539
Coefficient of variation (CV)1.438858829
Kurtosis-0.6618748576
Mean23.03404943
Median Absolute Deviation (MAD)0
Skewness1.013857874
Sum1154766
Variance1098.441572
MonotonicityNot monotonic
2021-12-26T21:02:13.842146image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
028647
57.1%
901630
 
3.3%
891348
 
2.7%
88831
 
1.7%
1652
 
1.3%
87564
 
1.1%
83526
 
1.0%
70446
 
0.9%
9424
 
0.8%
39420
 
0.8%
Other values (81)14645
29.2%
ValueCountFrequency (%)
028647
57.1%
1652
 
1.3%
2399
 
0.8%
3305
 
0.6%
4267
 
0.5%
5234
 
0.5%
6208
 
0.4%
7220
 
0.4%
8219
 
0.4%
9424
 
0.8%
ValueCountFrequency (%)
901630
3.3%
891348
2.7%
88831
1.7%
87564
 
1.1%
86249
 
0.5%
85227
 
0.5%
84242
 
0.5%
83526
 
1.0%
82222
 
0.4%
81222
 
0.4%

number_of_reviews
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct440
Distinct (%)0.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean20.83459996
Minimum0
Maximum1596
Zeros11423
Zeros (%)22.8%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:13.914963image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median5
Q321
95-th percentile95
Maximum1596
Range1596
Interquartile range (IQR)20

Descriptive statistics

Standard deviation44.95532338
Coefficient of variation (CV)2.157724336
Kurtosis74.57515397
Mean20.83459996
Median Absolute Deviation (MAD)5
Skewness6.026261383
Sum1044501
Variance2020.9811
MonotonicityNot monotonic
2021-12-26T21:02:13.990625image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
011423
22.8%
14784
 
9.5%
23214
 
6.4%
32474
 
4.9%
42034
 
4.1%
51749
 
3.5%
61353
 
2.7%
71274
 
2.5%
81165
 
2.3%
91005
 
2.0%
Other values (430)19658
39.2%
ValueCountFrequency (%)
011423
22.8%
14784
9.5%
23214
 
6.4%
32474
 
4.9%
42034
 
4.1%
51749
 
3.5%
61353
 
2.7%
71274
 
2.5%
81165
 
2.3%
91005
 
2.0%
ValueCountFrequency (%)
15961
< 0.1%
10081
< 0.1%
8681
< 0.1%
7961
< 0.1%
7881
< 0.1%
7721
< 0.1%
7581
< 0.1%
7491
< 0.1%
7091
< 0.1%
6641
< 0.1%

number_of_reviews_l30d
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
SKEWED
ZEROS

Distinct35
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.394111663
Minimum0
Maximum208
Zeros41484
Zeros (%)82.7%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:14.072534image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile3
Maximum208
Range208
Interquartile range (IQR)0

Descriptive statistics

Standard deviation1.593298757
Coefficient of variation (CV)4.042759722
Kurtosis5891.650316
Mean0.394111663
Median Absolute Deviation (MAD)0
Skewness50.49864021
Sum19758
Variance2.538600929
MonotonicityNot monotonic
2021-12-26T21:02:14.134474image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=35)
ValueCountFrequency (%)
041484
82.7%
14083
 
8.1%
22053
 
4.1%
31116
 
2.2%
4619
 
1.2%
5330
 
0.7%
6190
 
0.4%
7100
 
0.2%
852
 
0.1%
1024
 
< 0.1%
Other values (25)82
 
0.2%
ValueCountFrequency (%)
041484
82.7%
14083
 
8.1%
22053
 
4.1%
31116
 
2.2%
4619
 
1.2%
5330
 
0.7%
6190
 
0.4%
7100
 
0.2%
852
 
0.1%
923
 
< 0.1%
ValueCountFrequency (%)
2081
 
< 0.1%
581
 
< 0.1%
551
 
< 0.1%
511
 
< 0.1%
491
 
< 0.1%
371
 
< 0.1%
362
< 0.1%
332
< 0.1%
293
< 0.1%
272
< 0.1%

first_review
Date

MISSING

Distinct3210
Distinct (%)8.3%
Missing11423
Missing (%)22.8%
Memory size391.8 KiB
Minimum2010-02-28 00:00:00
Maximum2021-09-11 00:00:00
2021-12-26T21:02:14.202757image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:14.278282image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

review_scores_rating
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.9 MiB
0-79/100
38710 
nan
11423 

Length

Max length8
Median length8
Mean length6.860730457
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-79/100
2nd row0-79/100
3rd row0-79/100
4th rownan
5th row0-79/100

Common Values

ValueCountFrequency (%)
0-79/10038710
77.2%
nan11423
 
22.8%

Length

2021-12-26T21:02:14.498304image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.538319image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-79/10038710
77.2%
nan11423
 
22.8%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_accuracy
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38023 
nan
12110 

Length

Max length6
Median length6
Mean length5.275327629
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038023
75.8%
nan12110
 
24.2%

Length

2021-12-26T21:02:14.583156image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.624493image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038023
75.8%
nan12110
 
24.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_cleanliness
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38028 
nan
12105 

Length

Max length6
Median length6
Mean length5.275626833
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038028
75.9%
nan12105
 
24.1%

Length

2021-12-26T21:02:14.668379image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.710429image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038028
75.9%
nan12105
 
24.1%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_checkin
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38010 
nan
12123 

Length

Max length6
Median length6
Mean length5.274549698
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038010
75.8%
nan12123
 
24.2%

Length

2021-12-26T21:02:14.755419image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.796813image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038010
75.8%
nan12123
 
24.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_communication
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38021 
nan
12112 

Length

Max length6
Median length6
Mean length5.275207947
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038021
75.8%
nan12112
 
24.2%

Length

2021-12-26T21:02:14.841856image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.883632image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038021
75.8%
nan12112
 
24.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_location
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38008 
nan
12125 

Length

Max length6
Median length6
Mean length5.274430016
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038008
75.8%
nan12125
 
24.2%

Length

2021-12-26T21:02:14.927873image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:14.969524image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038008
75.8%
nan12125
 
24.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

review_scores_value
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.5 MiB
0-8/10
38005 
nan
12128 

Length

Max length6
Median length6
Mean length5.274250494
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0-8/10
2nd row0-8/10
3rd row0-8/10
4th rownan
5th row0-8/10

Common Values

ValueCountFrequency (%)
0-8/1038005
75.8%
nan12128
 
24.2%

Length

2021-12-26T21:02:15.013902image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.055475image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0-8/1038005
75.8%
nan12128
 
24.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

instant_bookable
Categorical

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.8 MiB
0
34160 
1
15973 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0

Common Values

ValueCountFrequency (%)
034160
68.1%
115973
31.9%

Length

2021-12-26T21:02:15.095085image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.131325image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
034160
68.1%
115973
31.9%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

calculated_host_listings_count
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct64
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean14.6217661
Minimum1
Maximum500
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:15.180805image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q11
median1
Q32
95-th percentile69
Maximum500
Range499
Interquartile range (IQR)1

Descriptive statistics

Standard deviation58.70327454
Coefficient of variation (CV)4.014786869
Kurtosis46.30884423
Mean14.6217661
Median Absolute Deviation (MAD)0
Skewness6.444880195
Sum733033
Variance3446.074442
MonotonicityNot monotonic
2021-12-26T21:02:15.252614image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
135956
71.7%
23882
 
7.7%
31134
 
2.3%
4820
 
1.6%
5730
 
1.5%
6528
 
1.1%
500500
 
1.0%
7441
 
0.9%
8384
 
0.8%
9279
 
0.6%
Other values (54)5479
 
10.9%
ValueCountFrequency (%)
135956
71.7%
23882
 
7.7%
31134
 
2.3%
4820
 
1.6%
5730
 
1.5%
6528
 
1.1%
7441
 
0.9%
8384
 
0.8%
9279
 
0.6%
10270
 
0.5%
ValueCountFrequency (%)
500500
1.0%
250250
0.5%
209209
0.4%
193193
 
0.4%
184184
 
0.4%
173173
 
0.3%
133266
0.5%
103103
 
0.2%
9494
 
0.2%
9393
 
0.2%

calculated_host_listings_count_entire_homes
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct64
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean13.88757904
Minimum0
Maximum500
Zeros7846
Zeros (%)15.7%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:15.327567image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median1
Q31
95-th percentile69
Maximum500
Range500
Interquartile range (IQR)0

Descriptive statistics

Standard deviation58.67400652
Coefficient of variation (CV)4.224926918
Kurtosis46.66464407
Mean13.88757904
Median Absolute Deviation (MAD)0
Skewness6.476993824
Sum696226
Variance3442.639041
MonotonicityNot monotonic
2021-12-26T21:02:15.399732image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
132752
65.3%
07846
 
15.7%
22296
 
4.6%
3555
 
1.1%
500500
 
1.0%
4319
 
0.6%
5302
 
0.6%
133266
 
0.5%
247250
 
0.5%
6214
 
0.4%
Other values (54)4833
 
9.6%
ValueCountFrequency (%)
07846
 
15.7%
132752
65.3%
22296
 
4.6%
3555
 
1.1%
4319
 
0.6%
5302
 
0.6%
6214
 
0.4%
7133
 
0.3%
8160
 
0.3%
9115
 
0.2%
ValueCountFrequency (%)
500500
1.0%
247250
0.5%
209209
0.4%
193193
 
0.4%
184184
 
0.4%
173173
 
0.3%
133266
0.5%
103103
 
0.2%
93187
 
0.4%
8686
 
0.2%

calculated_host_listings_count_private_rooms
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct20
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.4726427702
Minimum0
Maximum31
Zeros41509
Zeros (%)82.8%
Negative0
Negative (%)0.0%
Memory size391.8 KiB
2021-12-26T21:02:15.463149image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile2
Maximum31
Range31
Interquartile range (IQR)0

Descriptive statistics

Standard deviation2.204134506
Coefficient of variation (CV)4.663425836
Kurtosis113.3643454
Mean0.4726427702
Median Absolute Deviation (MAD)0
Skewness9.720016991
Sum23695
Variance4.85820892
MonotonicityNot monotonic
2021-12-26T21:02:15.519431image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=20)
ValueCountFrequency (%)
041509
82.8%
15878
 
11.7%
2849
 
1.7%
4343
 
0.7%
3309
 
0.6%
6243
 
0.5%
5240
 
0.5%
7136
 
0.3%
9128
 
0.3%
896
 
0.2%
Other values (10)402
 
0.8%
ValueCountFrequency (%)
041509
82.8%
15878
 
11.7%
2849
 
1.7%
3309
 
0.6%
4343
 
0.7%
5240
 
0.5%
6243
 
0.5%
7136
 
0.3%
896
 
0.2%
9128
 
0.3%
ValueCountFrequency (%)
3163
0.1%
3060
0.1%
2544
0.1%
2424
 
< 0.1%
2323
 
< 0.1%
2121
 
< 0.1%
1530
 
0.1%
1224
 
< 0.1%
1123
 
< 0.1%
1090
0.2%

air_conditioning
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
44175 
1.0
5958 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row0.0
3rd row0.0
4th row0.0
5th row0.0

Common Values

ValueCountFrequency (%)
0.044175
88.1%
1.05958
 
11.9%

Length

2021-12-26T21:02:15.578926image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.615993image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.044175
88.1%
1.05958
 
11.9%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

bed_linen
Categorical

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
29493 
1.0
20640 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.029493
58.8%
1.020640
41.2%

Length

2021-12-26T21:02:15.656115image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.692978image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.029493
58.8%
1.020640
41.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

breakfast
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
44096 
1.0
6037 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row0.0
3rd row0.0
4th row0.0
5th row0.0

Common Values

ValueCountFrequency (%)
0.044096
88.0%
1.06037
 
12.0%

Length

2021-12-26T21:02:15.733116image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.770405image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.044096
88.0%
1.06037
 
12.0%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

tv
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
1.0
34180 
0.0
15953 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.034180
68.2%
0.015953
31.8%

Length

2021-12-26T21:02:15.810128image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.846463image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
1.034180
68.2%
0.015953
31.8%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

coffee_machine
Categorical

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
28887 
1.0
21246 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.028887
57.6%
1.021246
42.4%

Length

2021-12-26T21:02:15.886169image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.922713image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.028887
57.6%
1.021246
42.4%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

cooking_basics
Categorical

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
26472 
1.0
23661 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.026472
52.8%
1.023661
47.2%

Length

2021-12-26T21:02:15.962146image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:15.998514image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.026472
52.8%
1.023661
47.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

white_goods
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
1.0
38608 
0.0
11525 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row0.0
5th row0.0

Common Values

ValueCountFrequency (%)
1.038608
77.0%
0.011525
 
23.0%

Length

2021-12-26T21:02:16.037891image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.074095image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
1.038608
77.0%
0.011525
 
23.0%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

elevator
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
30888 
1.0
19245 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row0.0
3rd row0.0
4th row1.0
5th row0.0

Common Values

ValueCountFrequency (%)
0.030888
61.6%
1.019245
38.4%

Length

2021-12-26T21:02:16.114850image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.151504image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.030888
61.6%
1.019245
38.4%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

parking
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
36324 
1.0
13809 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.036324
72.5%
1.013809
 
27.5%

Length

2021-12-26T21:02:16.191390image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.228018image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.036324
72.5%
1.013809
 
27.5%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

host_greeting
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
40509 
1.0
9624 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row0.0
4th row0.0
5th row1.0

Common Values

ValueCountFrequency (%)
0.040509
80.8%
1.09624
 
19.2%

Length

2021-12-26T21:02:16.267488image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.303895image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.040509
80.8%
1.09624
 
19.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

internet
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
1.0
47248 
0.0
 
2885

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row1.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.047248
94.2%
0.02885
 
5.8%

Length

2021-12-26T21:02:16.343695image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.513302image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
1.047248
94.2%
0.02885
 
5.8%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

long_term_stays
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
1.0
43853 
0.0
6280 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1.0
2nd row1.0
3rd row1.0
4th row1.0
5th row1.0

Common Values

ValueCountFrequency (%)
1.043853
87.5%
0.06280
 
12.5%

Length

2021-12-26T21:02:16.553019image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.589219image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
1.043853
87.5%
0.06280
 
12.5%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

private_entrance
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size2.9 MiB
0.0
42413 
1.0
7720 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row0.0
3rd row0.0
4th row0.0
5th row0.0

Common Values

ValueCountFrequency (%)
0.042413
84.6%
1.07720
 
15.4%

Length

2021-12-26T21:02:16.628941image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.666348image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
0.042413
84.6%
1.07720
 
15.4%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

time_since_first_review
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct6
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size5.1 MiB
4+ years
14180 
2-3 years
13372 
nan
11430 
1-2 years
5685 
0-6 months
3672 

Length

Max length11
Median length8
Mean length7.494005944
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row4+ years
2nd row4+ years
3rd row4+ years
4th rownan
5th row4+ years

Common Values

ValueCountFrequency (%)
4+ years14180
28.3%
2-3 years13372
26.7%
nan11430
22.8%
1-2 years5685
11.3%
0-6 months3672
 
7.3%
6-12 months1794
 
3.6%

Length

2021-12-26T21:02:16.712918image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.758608image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
years33237
37.4%
414180
16.0%
2-313372
15.1%
nan11430
 
12.9%
1-25685
 
6.4%
months5466
 
6.2%
0-63672
 
4.1%
6-121794
 
2.0%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

time_since_last_review
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct6
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size4.8 MiB
1+ year
28076 
nan
11477 
2-8 weeks
5410 
0-2 weeks
 
1998
2-6 months
 
1796

Length

Max length11
Median length7
Mean length6.597071789
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1+ year
2nd row2-8 weeks
3rd row1+ year
4th rownan
5th row2-6 months

Common Values

ValueCountFrequency (%)
1+ year28076
56.0%
nan11477
22.9%
2-8 weeks5410
 
10.8%
0-2 weeks1998
 
4.0%
2-6 months1796
 
3.6%
6-12 months1376
 
2.7%

Length

2021-12-26T21:02:16.821151image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-12-26T21:02:16.866408image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
128076
31.6%
year28076
31.6%
nan11477
12.9%
weeks7408
 
8.3%
2-85410
 
6.1%
months3172
 
3.6%
0-21998
 
2.3%
2-61796
 
2.0%
6-121376
 
1.5%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

Interactions

2021-12-26T21:02:07.758982image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:51.736319image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.836758image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.006760image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.328045image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.473412image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.546539image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.770325image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.835891image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.905442image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.122906image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.190659image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.370664image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.572469image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.665265image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.833363image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:51.817784image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.921829image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.079047image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.402278image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.542878image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.616713image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.842985image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.908421image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.978947image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.195799image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.269603image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.443421image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.646918image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.739132image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.911341image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:51.892731image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.040009image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.149355image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.477506image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.611428image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.685659image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.913432image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.979072image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.050886image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.266216image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.345672image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.512689image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.720125image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.813732image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.985653image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:51.964429image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.112278image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.220329image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.550810image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.684116image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.754912image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.983544image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.049474image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.121955image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.335797image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.421238image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.585907image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.791461image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.885687image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.065765image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.042639image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.189963image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.296425image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.630536image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.760221image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.830438image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.059369image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.126283image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.198713image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.410459image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.505919image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.664211image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.873223image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.964505image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.141630image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.112688image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.260037image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.368201image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.704757image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.828760image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.899652image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.129250image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.197868image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.269989image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.481317image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.582075image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.733693image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.945826image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.036445image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.214169image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.179397image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.328021image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.679438image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.774892image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.895163image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.124018image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.195038image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.264646image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.337833image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.548654image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.654232image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.799479image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.014324image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.104754image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.286526image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.249536image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.398554image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.749675image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.847392image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.963828image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.192039image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.263225image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.334642image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.540064image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.617137image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.729103image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.869089image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.085272image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.175012image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.360165image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.320180image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.470007image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.819268image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.920979image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.032739image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.260547image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.333567image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.404474image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.609139image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.687571image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.808650image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.073742image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.155399image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.247552image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.565853image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.395158image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.543729image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.897256image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.997575image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.103767image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.330079image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.405192image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.475988image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.680938image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.759289image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.890754image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.144384image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.227403image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.320401image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.637707image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.469277image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.639989image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:54.965563image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.073844image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.177005image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.395698image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.472299image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.543326image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.748572image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.826047image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.966492image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.212135image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.295288image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.390188image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.719281image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.547193image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.721218image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.042883image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.157992image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.256088image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.471458image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.550247image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.619428image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.826147image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.902774image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.053242image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.288392image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.374855image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.468120image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.790976image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.617781image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.790023image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.111055image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.230354image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.324643image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.542299image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.618666image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.687508image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.895064image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.970303image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.130540image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.358940image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.443550image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.537979image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.865745image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.689445image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.861082image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.182569image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.304542image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.397022image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.615391image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.689085image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.758321image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:01.967880image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.040704image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.213846image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.429450image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.516253image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.609731image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:08.939989image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:52.762285image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:53.933107image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:55.253865image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:56.380592image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:57.468577image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:58.698141image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:01:59.762446image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:00.831775image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:02.044395image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:03.116667image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:04.290745image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:05.500188image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:06.589660image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-12-26T21:02:07.682793image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Correlations

2021-12-26T21:02:16.950280image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2021-12-26T21:02:17.164824image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2021-12-26T21:02:17.373145image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2021-12-26T21:02:17.582695image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2021-12-26T21:02:17.813380image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2021-12-26T21:02:09.261378image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
A simple visualization of nullity by column.
2021-12-26T21:02:10.408087image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2021-12-26T21:02:10.905498image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
2021-12-26T21:02:11.166639image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.

Sample

First rows

idhost_response_timehost_response_ratehost_acceptance_ratehost_is_superhosthost_neighbourhoodhost_listings_counthost_total_listings_counthost_identity_verifiedneighbourhoodneighbourhood_cleansedproperty_typeroom_typeaccommodatesbathrooms_textbedroomsbedspriceminimum_nightsmaximum_nightsavailability_90number_of_reviewsnumber_of_reviews_l30dfirst_reviewreview_scores_ratingreview_scores_accuracyreview_scores_cleanlinessreview_scores_checkinreview_scores_communicationreview_scores_locationreview_scores_valueinstant_bookablecalculated_host_listings_countcalculated_host_listings_count_entire_homescalculated_host_listings_count_private_roomsair_conditioningbed_linenbreakfasttvcoffee_machinecooking_basicswhite_goodselevatorparkinghost_greetinginternetlong_term_staysprivate_entrancetime_since_first_reviewtime_since_last_review
05396within an hour100%89%0.0Saint-Paul - Ile Saint-Louis1.01.01.0Paris, Ile-de-France, FranceHôtel-de-VilleHouseEntire home/apt21 bath1.01.0110211252926032013-09-220-79/1000-8/100-8/100-8/100-8/100-8/100-8/1001100.01.00.01.00.01.01.00.00.01.01.01.00.04+ years1+ year
17397within an hour100%80%1.0Le Marais4.04.01.0NaNHôtel-de-VilleHouseEntire home/apt41 bath2.02.0100101302027822011-08-110-79/1000-8/100-8/100-8/100-8/100-8/100-8/1001100.01.00.01.01.01.01.00.01.01.01.01.00.04+ years2-8 weeks
27964within a day50-89%0%0.0Gare du Nord - Gare de I'Est0.00.01.0NaNOpéraHouseEntire home/apt21 bath1.01.0130636573602014-09-110-79/1000-8/100-8/100-8/100-8/100-8/100-8/1001100.00.00.01.00.00.01.00.00.00.01.01.00.04+ years1+ year
39359within an hour100%20%0.0Châtelet - Les Halles - Beaubourg3.03.01.0NaNLouvreHouseEntire home/apt21 bath1.01.075180365000NaTnannannannannannannan01100.00.00.00.00.00.00.01.00.00.01.01.00.0nannan
49952within an hour100%100%1.0République1.01.01.0Paris, Ile-de-France, FrancePopincourtHouseEntire home/apt21 bath1.01.08043123112016-08-040-79/1000-8/100-8/100-8/100-8/100-8/100-8/1001100.01.00.01.01.01.00.00.01.01.01.01.00.04+ years2-6 months
510586within a few hours100%55%1.0Montmartre4.04.01.0Paris, Ile-de-France, FranceButtes-MontmartreHouseEntire home/apt21 bath1.02.0803030094802011-01-030-79/1000-8/100-8/100-8/100-8/100-8/100-8/1004400.00.00.01.01.01.01.01.00.00.01.01.00.04+ years1+ year
610588within a few hours100%55%1.0Montmartre4.04.01.0Paris, Ile-de-France, FranceButtes-MontmartreHouseEntire home/apt21 bath1.01.07530730881802013-06-030-79/1000-8/100-8/100-8/100-8/100-8/100-8/1004400.00.00.01.00.00.01.00.00.00.01.01.00.04+ years1+ year
710917within an hour100%100%1.0Ternes5.05.01.0Paris, Île-de-France, FranceBatignolles-MonceauHouseEntire home/apt41 bath1.02.01433027902502010-08-130-79/1000-8/100-8/100-8/100-8/100-8/100-8/1011101.00.00.01.00.01.01.01.01.00.01.01.00.04+ years1+ year
811213within a few hours100%71%0.0République2.02.01.0Paris, Île-de-France, FranceEntrepôtApartmentPrivate room61 private bath1.03.01701730015102015-10-120-79/1000-8/100-8/100-8/100-8/100-8/100-8/1002020.00.00.01.00.01.01.00.00.00.01.01.00.04+ years1+ year
911265unknownunknownNaN0.0Montmartre1.01.01.0Paris, Île-de-France, FranceButtes-MontmartreHouseEntire home/apt21 bath1.01.0100712001602016-09-090-79/1000-8/100-8/100-8/100-8/100-8/100-8/1001100.01.00.01.01.01.01.01.01.00.01.01.00.04+ years1+ year

Last rows

idhost_response_timehost_response_ratehost_acceptance_ratehost_is_superhosthost_neighbourhoodhost_listings_counthost_total_listings_counthost_identity_verifiedneighbourhoodneighbourhood_cleansedproperty_typeroom_typeaccommodatesbathrooms_textbedroomsbedspriceminimum_nightsmaximum_nightsavailability_90number_of_reviewsnumber_of_reviews_l30dfirst_reviewreview_scores_ratingreview_scores_accuracyreview_scores_cleanlinessreview_scores_checkinreview_scores_communicationreview_scores_locationreview_scores_valueinstant_bookablecalculated_host_listings_countcalculated_host_listings_count_entire_homescalculated_host_listings_count_private_roomsair_conditioningbed_linenbreakfasttvcoffee_machinecooking_basicswhite_goodselevatorparkinghost_greetinginternetlong_term_staysprivate_entrancetime_since_first_reviewtime_since_last_review
5012352159765within an hour90-99%95%0.0II Arrondissement85.085.01.0Paris, Île-de-France, FrancePalais-BourbonHouseEntire home/apt21 bath1.01.0102111258100NaTnannannannannannannan0696900.01.00.01.01.01.00.00.00.00.01.01.00.0nannan
5012452159958within an hour100%100%0.0NaN0.00.01.0NaNEntrepôtHotelPrivate room21 private bath1.01.01121107700NaTnannannannannannannan15051.00.01.01.00.00.00.01.00.00.01.00.00.0nannan
5012552160741within an hour90-99%98%0.0Châtelet - Les Halles - Beaubourg209.0209.01.0Paris, Île-de-France, FranceMénilmontantHouseEntire home/apt41 bath1.02.089211247800NaTnannannannannannannan117317300.01.00.01.01.01.00.00.00.00.01.01.00.0nannan
5012652161033within an hour90-99%98%0.0Châtelet - Les Halles - Beaubourg209.0209.01.0Paris, Île-de-France, FranceBourseHouseEntire home/apt21 bath1.01.01000211258400NaTnannannannannannannan117317300.01.00.01.00.01.00.00.00.00.01.01.00.0nannan
5012752161127within an hour100%56%0.0NaN0.00.01.0NaNPanthéonApartmentEntire home/apt41 bath1.02.01603011258400NaTnannannannannannannan1595901.00.00.01.00.01.01.00.00.00.01.01.01.0nannan
5012852162381unknownunknownNaN0.0Pigalle - Saint-Georges5.05.01.0Paris, Île-de-France, FranceEntrepôtHouseEntire home/apt41 bath1.02.0142111258600NaTnannannannannannannan1313100.01.00.01.01.01.01.00.00.00.01.01.00.0nannan
5012952162674within an hour50-89%99%0.0NaN4.04.01.0NaNPassyApartmentEntire home/apt41 bath1.02.0138111257900NaTnannannannannannannan12200.00.00.01.00.01.01.01.00.00.01.01.01.0nannan
5013052163316unknownunknownNaN0.0Commerce - Dupleix175.0175.00.0Paris, Île-de-France, FranceTempleHouseEntire home/apt21 bath1.01.061311258100NaTnannannannannannannan1615440.00.00.01.00.01.00.00.00.01.01.01.00.0nannan
5013152165011within an hour90-99%98%0.02nd Arrondissement138.0138.01.0Paris, Île-de-France, FrancePopincourtHouseEntire home/apt21 bath1.01.0100211258500NaTnannannannannannannan1333300.01.00.01.01.01.01.00.00.00.01.01.00.0nannan
5013252166001within an hour100%100%1.0Pigalle - Saint-Georges1.01.01.0NaNOpéraHouseEntire home/apt31 bath1.03.0693011254700NaTnannannannannannannan02200.01.00.00.01.01.01.01.01.01.01.01.00.0nannan