Dataset statistics
Number of variables | 4 |
---|---|
Number of observations | 2026 |
Missing cells | 71 |
Missing cells (%) | 0.9% |
Duplicate rows | 0 |
Duplicate rows (%) | 0.0% |
Total size in memory | 267.2 KiB |
Average record size in memory | 135.1 B |
Variable types
Categorical | 1 |
---|---|
Numeric | 2 |
DateTime | 1 |
DATE has a high cardinality: 2026 distinct values | High cardinality |
SP500 has 70 (3.5%) missing values | Missing |
DATE is uniformly distributed | Uniform |
DATE has unique values | Unique |
Date has unique values | Unique |
% 1-Day Return has 71 (3.5%) zeros | Zeros |
Reproduction
Analysis started | 2022-03-13 23:55:08.555107 |
---|---|
Analysis finished | 2022-03-13 23:55:09.433427 |
Duration | 0.88 seconds |
Software version | pandas-profiling v3.1.0 |
Download configuration | config.json |
Distinct | 2026 |
---|---|
Distinct (%) | 100.0% |
Missing | 0 |
Missing (%) | 0.0% |
Memory size | 132.7 KiB |
2014-06-06 | 1 |
---|---|
2019-08-02 | 1 |
2019-08-21 | 1 |
2019-08-20 | 1 |
2019-08-19 | 1 |
Other values (2021) |
Length
Max length | 10 |
---|---|
Median length | 10 |
Mean length | 10 |
Min length | 10 |
Characters and Unicode
Total characters | 0 |
---|---|
Distinct characters | 0 |
Distinct categories | 0 ? |
Distinct scripts | 0 ? |
Distinct blocks | 0 ? |
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.
Unique
Unique | 2026 ? |
---|---|
Unique (%) | 100.0% |
Sample
1st row | 2014-06-06 |
---|---|
2nd row | 2014-06-09 |
3rd row | 2014-06-10 |
4th row | 2014-06-11 |
5th row | 2014-06-12 |
Common Values
Value | Count | Frequency (%) |
2014-06-06 | 1 | < 0.1% |
2019-08-02 | 1 | < 0.1% |
2019-08-21 | 1 | < 0.1% |
2019-08-20 | 1 | < 0.1% |
2019-08-19 | 1 | < 0.1% |
2019-08-16 | 1 | < 0.1% |
2019-08-15 | 1 | < 0.1% |
2019-08-14 | 1 | < 0.1% |
2019-08-13 | 1 | < 0.1% |
2019-08-12 | 1 | < 0.1% |
Other values (2016) | 2016 |
Length
Histogram of lengths of the category
Value | Count | Frequency (%) |
2014-06-06 | 1 | < 0.1% |
2014-07-02 | 1 | < 0.1% |
2014-06-13 | 1 | < 0.1% |
2014-06-16 | 1 | < 0.1% |
2014-06-17 | 1 | < 0.1% |
2014-06-18 | 1 | < 0.1% |
2014-06-19 | 1 | < 0.1% |
2014-06-20 | 1 | < 0.1% |
2014-06-23 | 1 | < 0.1% |
2014-06-24 | 1 | < 0.1% |
Other values (2016) | 2016 |
Most occurring characters
Value | Count | Frequency (%) |
No values found. |
Most occurring categories
Value | Count | Frequency (%) |
No values found. |
Most frequent character per category
Most occurring scripts
Value | Count | Frequency (%) |
No values found. |
Most frequent character per script
Most occurring blocks
Value | Count | Frequency (%) |
No values found. |
Most frequent character per block
Distinct | 1945 |
---|---|
Distinct (%) | 99.4% |
Missing | 70 |
Missing (%) | 3.5% |
Infinite | 0 |
Infinite (%) | 0.0% |
Mean | 2801.088016 |
Minimum | 1829.08 |
---|---|
Maximum | 4796.56 |
Zeros | 0 |
Zeros (%) | 0.0% |
Negative | 0 |
Negative (%) | 0.0% |
Memory size | 16.0 KiB |
Quantile statistics
Minimum | 1829.08 |
---|---|
5-th percentile | 1961.0275 |
Q1 | 2108.905 |
median | 2670.025 |
Q3 | 3130.0375 |
95-th percentile | 4456.255 |
Maximum | 4796.56 |
Range | 2967.48 |
Interquartile range (IQR) | 1021.1325 |
Descriptive statistics
Standard deviation | 776.9689512 |
---|---|
Coefficient of variation (CV) | 0.2773811271 |
Kurtosis | -0.05808348742 |
Mean | 2801.088016 |
Median Absolute Deviation (MAD) | 548.6 |
Skewness | 0.9570039718 |
Sum | 5478928.16 |
Variance | 603680.7511 |
Monotonicity | Not monotonic |
Histogram with fixed size bins (bins=50)
Value | Count | Frequency (%) |
2066.66 | 2 | 0.1% |
2439.07 | 2 | 0.1% |
2783.02 | 2 | 0.1% |
2268.9 | 2 | 0.1% |
2926.46 | 2 | 0.1% |
2373.47 | 2 | 0.1% |
2095.84 | 2 | 0.1% |
2102.31 | 2 | 0.1% |
2080.15 | 2 | 0.1% |
2723.06 | 2 | 0.1% |
Other values (1935) | 1936 | |
(Missing) | 70 | 3.5% |
Value | Count | Frequency (%) |
1829.08 | 1 | |
1851.86 | 1 | |
1852.21 | 1 | |
1853.44 | 1 | |
1859.33 | 1 | |
1862.49 | 1 | |
1862.76 | 1 | |
1864.78 | 1 | |
1867.61 | 1 | |
1868.99 | 1 |
Value | Count | Frequency (%) |
4796.56 | 1 | |
4793.54 | 1 | |
4793.06 | 1 | |
4791.19 | 1 | |
4786.35 | 1 | |
4778.73 | 1 | |
4766.18 | 1 | |
4726.35 | 1 | |
4725.79 | 1 | |
4713.07 | 1 |
Distinct | 1955 |
---|---|
Distinct (%) | 96.5% |
Missing | 1 |
Missing (%) | < 0.1% |
Infinite | 0 |
Infinite (%) | 0.0% |
Mean | 0.04397695168 |
Minimum | -11.98405028 |
---|---|
Maximum | 9.38276571 |
Zeros | 71 |
Zeros (%) | 3.5% |
Negative | 892 |
Negative (%) | 44.0% |
Memory size | 16.0 KiB |
Quantile statistics
Minimum | -11.98405028 |
---|---|
5-th percentile | -1.630657564 |
Q1 | -0.309931843 |
median | 0.03426822371 |
Q3 | 0.5022110835 |
95-th percentile | 1.468397098 |
Maximum | 9.38276571 |
Range | 21.36681599 |
Interquartile range (IQR) | 0.8121429265 |
Descriptive statistics
Standard deviation | 1.094093047 |
---|---|
Coefficient of variation (CV) | 24.8787832 |
Kurtosis | 19.61983268 |
Mean | 0.04397695168 |
Median Absolute Deviation (MAD) | 0.4114931522 |
Skewness | -0.6434118056 |
Sum | 89.05332716 |
Variance | 1.197039595 |
Monotonicity | Not monotonic |
Histogram with fixed size bins (bins=50)
Value | Count | Frequency (%) |
0 | 71 | 3.5% |
1.301700683 | 1 | < 0.1% |
-0.0506081527 | 1 | < 0.1% |
0.8246825558 | 1 | < 0.1% |
-0.7914764079 | 1 | < 0.1% |
1.210587535 | 1 | < 0.1% |
1.442618345 | 1 | < 0.1% |
0.2464268112 | 1 | < 0.1% |
-2.929276361 | 1 | < 0.1% |
1.476202861 | 1 | < 0.1% |
Other values (1945) | 1945 |
Value | Count | Frequency (%) |
-11.98405028 | 1 | |
-9.511268047 | 1 | |
-7.596968076 | 1 | |
-5.894412157 | 1 | |
-5.183082331 | 1 | |
-4.886841092 | 1 | |
-4.416327867 | 1 | |
-4.414239783 | 1 | |
-4.335952253 | 1 | |
-4.097924428 | 1 |
Value | Count | Frequency (%) |
9.38276571 | 1 | |
9.287119453 | 1 | |
7.033130412 | 1 | |
6.241416084 | 1 | |
5.995482224 | 1 | |
4.959380715 | 1 | |
4.939633578 | 1 | |
4.603922524 | 1 | |
4.220259242 | 1 | |
3.90338454 | 1 |
Spearman's ρ
The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
Pearson's r
The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
Kendall's τ
Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
Phik (φk)
Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here. A simple visualization of nullity by column.
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.
First rows
DATE | SP500 | % 1-Day Return | Date | |
---|---|---|---|---|
0 | 2014-06-06 | 1949.44 | NaN | 2014-06-06 |
1 | 2014-06-09 | 1951.27 | 0.093873 | 2014-06-09 |
2 | 2014-06-10 | 1950.79 | -0.024599 | 2014-06-10 |
3 | 2014-06-11 | 1943.89 | -0.353703 | 2014-06-11 |
4 | 2014-06-12 | 1930.11 | -0.708888 | 2014-06-12 |
5 | 2014-06-13 | 1936.16 | 0.313454 | 2014-06-13 |
6 | 2014-06-16 | 1937.78 | 0.083671 | 2014-06-16 |
7 | 2014-06-17 | 1941.99 | 0.217259 | 2014-06-17 |
8 | 2014-06-18 | 1956.98 | 0.771889 | 2014-06-18 |
9 | 2014-06-19 | 1959.48 | 0.127748 | 2014-06-19 |
Last rows
DATE | SP500 | % 1-Day Return | Date | |
---|---|---|---|---|
2016 | 2022-02-28 | 4373.94 | -0.244261 | 2022-02-28 |
2017 | 2022-03-01 | 4306.26 | -1.547346 | 2022-03-01 |
2018 | 2022-03-02 | 4386.54 | 1.864263 | 2022-03-02 |
2019 | 2022-03-03 | 4363.49 | -0.525471 | 2022-03-03 |
2020 | 2022-03-04 | 4328.87 | -0.793402 | 2022-03-04 |
2021 | 2022-03-07 | 4201.09 | -2.951810 | 2022-03-07 |
2022 | 2022-03-08 | 4170.70 | -0.723384 | 2022-03-08 |
2023 | 2022-03-09 | 4277.88 | 2.569832 | 2022-03-09 |
2024 | 2022-03-10 | 4259.52 | -0.429185 | 2022-03-10 |
2025 | 2022-03-11 | 4204.31 | -1.296155 | 2022-03-11 |