Overview

Dataset statistics

Number of variables30
Number of observations10000
Missing cells5991
Missing cells (%)2.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory2.3 MiB
Average record size in memory240.0 B

Variable types

Numeric21
Categorical9

Alerts

GS has constant value "1" Constant
DATE has a high cardinality: 3090 distinct values High cardinality
AGE has a high cardinality: 4778 distinct values High cardinality
RESULT has a high cardinality: 100 distinct values High cardinality
MP has a high cardinality: 2116 distinct values High cardinality
Player has a high cardinality: 1035 distinct values High cardinality
df_index is highly correlated with FG and 6 other fieldsHigh correlation
FG is highly correlated with df_index and 4 other fieldsHigh correlation
FGA is highly correlated with df_index and 3 other fieldsHigh correlation
FG% is highly correlated with df_index and 2 other fieldsHigh correlation
3P is highly correlated with 3PA and 1 other fieldsHigh correlation
3PA is highly correlated with 3PHigh correlation
3P% is highly correlated with 3PHigh correlation
FT is highly correlated with df_index and 3 other fieldsHigh correlation
FTA is highly correlated with df_index and 3 other fieldsHigh correlation
ORB is highly correlated with TRBHigh correlation
DRB is highly correlated with TRBHigh correlation
TRB is highly correlated with ORB and 1 other fieldsHigh correlation
PTS is highly correlated with df_index and 5 other fieldsHigh correlation
GAME_SCORE is highly correlated with df_index and 6 other fieldsHigh correlation
df_index is highly correlated with FG and 6 other fieldsHigh correlation
FG is highly correlated with df_index and 4 other fieldsHigh correlation
FGA is highly correlated with df_index and 3 other fieldsHigh correlation
FG% is highly correlated with df_index and 2 other fieldsHigh correlation
3P is highly correlated with 3PA and 1 other fieldsHigh correlation
3PA is highly correlated with 3PHigh correlation
3P% is highly correlated with 3PHigh correlation
FT is highly correlated with df_index and 3 other fieldsHigh correlation
FTA is highly correlated with df_index and 3 other fieldsHigh correlation
ORB is highly correlated with TRBHigh correlation
DRB is highly correlated with TRBHigh correlation
TRB is highly correlated with ORB and 1 other fieldsHigh correlation
PTS is highly correlated with df_index and 5 other fieldsHigh correlation
GAME_SCORE is highly correlated with df_index and 6 other fieldsHigh correlation
df_index is highly correlated with GS and 7 other fieldsHigh correlation
GS is highly correlated with df_indexHigh correlation
FG is highly correlated with df_index and 3 other fieldsHigh correlation
FGA is highly correlated with FG and 1 other fieldsHigh correlation
3P is highly correlated with df_index and 1 other fieldsHigh correlation
3PA is highly correlated with BLKHigh correlation
3P% is highly correlated with BLKHigh correlation
FT is highly correlated with df_index and 1 other fieldsHigh correlation
FTA is highly correlated with df_index and 1 other fieldsHigh correlation
DRB is highly correlated with TRBHigh correlation
TRB is highly correlated with DRBHigh correlation
AST is highly correlated with BLKHigh correlation
BLK is highly correlated with df_index and 4 other fieldsHigh correlation
PTS is highly correlated with df_index and 3 other fieldsHigh correlation
GAME_SCORE is highly correlated with df_index and 2 other fieldsHigh correlation
GS is highly correlated with RESULT and 3 other fieldsHigh correlation
RESULT is highly correlated with GSHigh correlation
HOME/AWAY is highly correlated with GSHigh correlation
OPPONENT is highly correlated with GSHigh correlation
TEAM is highly correlated with GSHigh correlation
df_index is highly correlated with FG and 6 other fieldsHigh correlation
RESULT is highly correlated with +/-High correlation
FG is highly correlated with df_index and 6 other fieldsHigh correlation
FGA is highly correlated with df_index and 5 other fieldsHigh correlation
FG% is highly correlated with df_index and 5 other fieldsHigh correlation
3P is highly correlated with FG and 4 other fieldsHigh correlation
3PA is highly correlated with FG and 4 other fieldsHigh correlation
3P% is highly correlated with FG% and 2 other fieldsHigh correlation
FT is highly correlated with df_index and 4 other fieldsHigh correlation
FTA is highly correlated with df_index and 4 other fieldsHigh correlation
FT% is highly correlated with FT and 1 other fieldsHigh correlation
ORB is highly correlated with TRBHigh correlation
DRB is highly correlated with TRBHigh correlation
TRB is highly correlated with ORB and 1 other fieldsHigh correlation
PTS is highly correlated with df_index and 8 other fieldsHigh correlation
GAME_SCORE is highly correlated with df_index and 7 other fieldsHigh correlation
+/- is highly correlated with RESULTHigh correlation
3P% has 3271 (32.7%) missing values Missing
FT% has 2680 (26.8%) missing values Missing
AGE is uniformly distributed Uniform
FG has 362 (3.6%) zeros Zeros
FG% has 322 (3.2%) zeros Zeros
3P has 5276 (52.8%) zeros Zeros
3PA has 3271 (32.7%) zeros Zeros
3P% has 2005 (20.1%) zeros Zeros
FT has 3043 (30.4%) zeros Zeros
FTA has 2680 (26.8%) zeros Zeros
FT% has 363 (3.6%) zeros Zeros
ORB has 3669 (36.7%) zeros Zeros
DRB has 521 (5.2%) zeros Zeros
TRB has 294 (2.9%) zeros Zeros
AST has 1643 (16.4%) zeros Zeros
STL has 4128 (41.3%) zeros Zeros
BLK has 6081 (60.8%) zeros Zeros
TOV has 1993 (19.9%) zeros Zeros
PF has 906 (9.1%) zeros Zeros
PTS has 255 (2.5%) zeros Zeros
+/- has 346 (3.5%) zeros Zeros

Reproduction

Analysis started2021-11-14 20:13:15.742048
Analysis finished2021-11-14 20:13:58.249122
Duration42.51 seconds
Software versionpandas-profiling v3.1.0
Download configurationconfig.json

Variables

df_index
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct552
Distinct (%)5.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean214.1238
Minimum0
Maximum907
Zeros32
Zeros (%)0.3%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:58.309686image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile20
Q1104
median210
Q3316
95-th percentile419
Maximum907
Range907
Interquartile range (IQR)212

Descriptive statistics

Standard deviation128.7618369
Coefficient of variation (CV)0.6013429468
Kurtosis-0.6070415347
Mean214.1238
Median Absolute Deviation (MAD)106
Skewness0.2320254143
Sum2141238
Variance16579.61063
MonotonicityNot monotonic
2021-11-14T15:13:58.379509image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
11537
 
0.4%
6237
 
0.4%
136
 
0.4%
20635
 
0.4%
9434
 
0.3%
33734
 
0.3%
18933
 
0.3%
8833
 
0.3%
13133
 
0.3%
25132
 
0.3%
Other values (542)9656
96.6%
ValueCountFrequency (%)
032
0.3%
136
0.4%
227
0.3%
318
0.2%
429
0.3%
522
0.2%
621
0.2%
722
0.2%
819
0.2%
923
0.2%
ValueCountFrequency (%)
9071
< 0.1%
9011
< 0.1%
8691
< 0.1%
8301
< 0.1%
7821
< 0.1%
7211
< 0.1%
7111
< 0.1%
7081
< 0.1%
6781
< 0.1%
6331
< 0.1%

DATE
Categorical

HIGH CARDINALITY

Distinct3090
Distinct (%)30.9%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
2009-03-15
 
12
2012-04-11
 
12
2014-03-28
 
11
2018-04-11
 
11
2018-10-22
 
11
Other values (3085)
9943 

Length

Max length10
Median length10
Mean length10
Min length10

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique607 ?
Unique (%)6.1%

Sample

1st row2007-02-27
2nd row2014-01-31
3rd row2011-02-05
4th row2008-02-22
5th row2014-11-15

Common Values

ValueCountFrequency (%)
2009-03-1512
 
0.1%
2012-04-1112
 
0.1%
2014-03-2811
 
0.1%
2018-04-1111
 
0.1%
2018-10-2211
 
0.1%
2010-03-1911
 
0.1%
2007-04-0610
 
0.1%
2013-11-2210
 
0.1%
2014-02-1210
 
0.1%
2011-03-1610
 
0.1%
Other values (3080)9892
98.9%

Length

2021-11-14T15:13:58.444917image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2009-03-1512
 
0.1%
2012-04-1112
 
0.1%
2014-03-2811
 
0.1%
2018-04-1111
 
0.1%
2018-10-2211
 
0.1%
2010-03-1911
 
0.1%
2004-01-2510
 
0.1%
2015-10-2810
 
0.1%
2013-01-2310
 
0.1%
2010-10-2910
 
0.1%
Other values (3080)9892
98.9%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

AGE
Categorical

HIGH CARDINALITY
UNIFORM

Distinct4778
Distinct (%)47.8%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
25-119
 
9
28-232
 
9
27-289
 
9
30-203
 
8
23-312
 
8
Other values (4773)
9957 

Length

Max length6
Median length6
Mean length6
Min length6

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2047 ?
Unique (%)20.5%

Sample

1st row30-161
2nd row37-257
3rd row22-328
4th row33-168
5th row26-075

Common Values

ValueCountFrequency (%)
25-1199
 
0.1%
28-2329
 
0.1%
27-2899
 
0.1%
30-2038
 
0.1%
23-3128
 
0.1%
28-2888
 
0.1%
27-2328
 
0.1%
27-1118
 
0.1%
26-1298
 
0.1%
26-1258
 
0.1%
Other values (4768)9917
99.2%

Length

2021-11-14T15:13:58.500687image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
25-1199
 
0.1%
27-2899
 
0.1%
28-2329
 
0.1%
30-2038
 
0.1%
23-3128
 
0.1%
28-2888
 
0.1%
27-2328
 
0.1%
27-1118
 
0.1%
26-1298
 
0.1%
26-1258
 
0.1%
Other values (4768)9917
99.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

TEAM
Categorical

HIGH CORRELATION

Distinct35
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
ATL
 
459
DET
 
444
CHI
 
430
BOS
 
420
LAC
 
417
Other values (30)
7830 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st rowPHO
2nd rowBRK
3rd rowGSW
4th rowDET
5th rowPHO

Common Values

ValueCountFrequency (%)
ATL459
 
4.6%
DET444
 
4.4%
CHI430
 
4.3%
BOS420
 
4.2%
LAC417
 
4.2%
PHI416
 
4.2%
MIA413
 
4.1%
PHO412
 
4.1%
CLE412
 
4.1%
HOU409
 
4.1%
Other values (25)5768
57.7%

Length

2021-11-14T15:13:58.556191image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
atl459
 
4.6%
det444
 
4.4%
chi430
 
4.3%
bos420
 
4.2%
lac417
 
4.2%
phi416
 
4.2%
mia413
 
4.1%
cle412
 
4.1%
pho412
 
4.1%
hou409
 
4.1%
Other values (25)5768
57.7%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

HOME/AWAY
Categorical

HIGH CORRELATION

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
HOME
5020 
AWAY
4980 

Length

Max length4
Median length4
Mean length4
Min length4

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowAWAY
2nd rowHOME
3rd rowHOME
4th rowHOME
5th rowAWAY

Common Values

ValueCountFrequency (%)
HOME5020
50.2%
AWAY4980
49.8%

Length

2021-11-14T15:13:58.611194image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-11-14T15:13:58.648369image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
home5020
50.2%
away4980
49.8%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

OPPONENT
Categorical

HIGH CORRELATION

Distinct37
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
NYK
 
385
LAC
 
380
BOS
 
372
TOR
 
371
HOU
 
367
Other values (32)
8125 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowIND
2nd rowOKC
3rd rowCHI
4th rowMIL
5th rowLAC

Common Values

ValueCountFrequency (%)
NYK385
 
3.9%
LAC380
 
3.8%
BOS372
 
3.7%
TOR371
 
3.7%
HOU367
 
3.7%
CLE344
 
3.4%
WAS343
 
3.4%
MIL343
 
3.4%
MIN340
 
3.4%
PHI337
 
3.4%
Other values (27)6418
64.2%

Length

2021-11-14T15:13:58.690344image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
nyk385
 
3.9%
lac380
 
3.8%
bos372
 
3.7%
tor371
 
3.7%
hou367
 
3.7%
cle344
 
3.4%
was343
 
3.4%
mil343
 
3.4%
min340
 
3.4%
phi337
 
3.4%
Other values (27)6418
64.2%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

RESULT
Categorical

HIGH CARDINALITY
HIGH CORRELATION
HIGH CORRELATION

Distinct100
Distinct (%)1.0%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
W (+5)
 
369
L (-5)
 
333
W (+6)
 
326
W (+7)
 
324
L (-7)
 
319
Other values (95)
8329 

Length

Max length7
Median length6
Mean length6.4691
Min length6

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique8 ?
Unique (%)0.1%

Sample

1st rowW (+11)
2nd rowL (-25)
3rd rowW (+11)
4th rowW (+27)
5th rowL (-13)

Common Values

ValueCountFrequency (%)
W (+5)369
 
3.7%
L (-5)333
 
3.3%
W (+6)326
 
3.3%
W (+7)324
 
3.2%
L (-7)319
 
3.2%
W (+8)312
 
3.1%
L (-6)312
 
3.1%
W (+4)306
 
3.1%
L (-4)303
 
3.0%
W (+3)295
 
2.9%
Other values (90)6801
68.0%

Length

2021-11-14T15:13:58.746564image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
w5072
25.4%
l4928
24.6%
5702
 
3.5%
7643
 
3.2%
6638
 
3.2%
4609
 
3.0%
8599
 
3.0%
2566
 
2.8%
3559
 
2.8%
9559
 
2.8%
Other values (45)5125
25.6%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

GS
Categorical

CONSTANT
HIGH CORRELATION
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
1
10000 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1
2nd row1
3rd row1
4th row1
5th row1

Common Values

ValueCountFrequency (%)
110000
100.0%

Length

2021-11-14T15:13:58.803272image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category

Pie chart

2021-11-14T15:13:58.838888image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
ValueCountFrequency (%)
110000
100.0%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

MP
Categorical

HIGH CARDINALITY

Distinct2116
Distinct (%)21.2%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
34:25
 
19
24:00
 
19
34:39
 
18
34:10
 
17
35:01
 
17
Other values (2111)
9910 

Length

Max length5
Median length5
Mean length4.9913
Min length4

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique420 ?
Unique (%)4.2%

Sample

1st row41:10
2nd row12:14
3rd row44:17
4th row25:22
5th row18:36

Common Values

ValueCountFrequency (%)
34:2519
 
0.2%
24:0019
 
0.2%
34:3918
 
0.2%
34:1017
 
0.2%
35:0117
 
0.2%
35:3017
 
0.2%
36:5017
 
0.2%
33:5416
 
0.2%
34:5916
 
0.2%
36:3016
 
0.2%
Other values (2106)9828
98.3%

Length

2021-11-14T15:13:58.875904image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
34:2519
 
0.2%
24:0019
 
0.2%
34:3918
 
0.2%
34:1017
 
0.2%
35:0117
 
0.2%
35:3017
 
0.2%
36:5017
 
0.2%
33:5416
 
0.2%
34:5916
 
0.2%
36:3016
 
0.2%
Other values (2106)9828
98.3%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

FG
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct21
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5.1135
Minimum0
Maximum21
Zeros362
Zeros (%)3.6%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:58.933134image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q13
median5
Q37
95-th percentile11
Maximum21
Range21
Interquartile range (IQR)4

Descriptive statistics

Standard deviation3.135634062
Coefficient of variation (CV)0.6132070132
Kurtosis0.3152276288
Mean5.1135
Median Absolute Deviation (MAD)2
Skewness0.6660248195
Sum51135
Variance9.83220097
MonotonicityNot monotonic
2021-11-14T15:13:58.988889image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=21)
ValueCountFrequency (%)
41289
12.9%
31215
12.2%
51212
12.1%
21079
10.8%
61063
10.6%
7820
8.2%
1779
7.8%
8706
7.1%
9527
5.3%
10378
 
3.8%
Other values (11)932
9.3%
ValueCountFrequency (%)
0362
 
3.6%
1779
7.8%
21079
10.8%
31215
12.2%
41289
12.9%
51212
12.1%
61063
10.6%
7820
8.2%
8706
7.1%
9527
5.3%
ValueCountFrequency (%)
211
 
< 0.1%
193
 
< 0.1%
181
 
< 0.1%
1711
 
0.1%
1619
 
0.2%
1533
 
0.3%
1450
 
0.5%
1374
 
0.7%
12146
1.5%
11232
2.3%

FGA
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct36
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean11.1413
Minimum0
Maximum36
Zeros40
Zeros (%)0.4%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.050963image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile3
Q17
median11
Q315
95-th percentile21
Maximum36
Range36
Interquartile range (IQR)8

Descriptive statistics

Standard deviation5.609160417
Coefficient of variation (CV)0.503456546
Kurtosis0.2245240736
Mean11.1413
Median Absolute Deviation (MAD)4
Skewness0.5644622841
Sum111413
Variance31.46268058
MonotonicityNot monotonic
2021-11-14T15:13:59.118091image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=36)
ValueCountFrequency (%)
10716
 
7.2%
8685
 
6.9%
9684
 
6.8%
7654
 
6.5%
11649
 
6.5%
12626
 
6.3%
6605
 
6.0%
13601
 
6.0%
14534
 
5.3%
5521
 
5.2%
Other values (26)3725
37.2%
ValueCountFrequency (%)
040
 
0.4%
1102
 
1.0%
2210
 
2.1%
3320
3.2%
4422
4.2%
5521
5.2%
6605
6.0%
7654
6.5%
8685
6.9%
9684
6.8%
ValueCountFrequency (%)
362
 
< 0.1%
344
 
< 0.1%
337
 
0.1%
324
 
< 0.1%
3112
 
0.1%
306
 
0.1%
2916
0.2%
2819
0.2%
2716
0.2%
2630
0.3%

FG%
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct177
Distinct (%)1.8%
Missing40
Missing (%)0.4%
Infinite0
Infinite (%)0.0%
Mean0.4532705823
Minimum0
Maximum1
Zeros322
Zeros (%)3.2%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.197283image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0.143
Q10.333
median0.455
Q30.571
95-th percentile0.75
Maximum1
Range1
Interquartile range (IQR)0.238

Descriptive statistics

Standard deviation0.1837160403
Coefficient of variation (CV)0.4053120751
Kurtosis0.613240718
Mean0.4532705823
Median Absolute Deviation (MAD)0.116
Skewness0.03355064847
Sum4514.575
Variance0.03375158347
MonotonicityNot monotonic
2021-11-14T15:13:59.272887image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0.51159
 
11.6%
0.333663
 
6.6%
0.4463
 
4.6%
0.667410
 
4.1%
0.6366
 
3.7%
0.25337
 
3.4%
0.429326
 
3.3%
0322
 
3.2%
0.375231
 
2.3%
0.571224
 
2.2%
Other values (167)5459
54.6%
ValueCountFrequency (%)
0322
3.2%
0.0561
 
< 0.1%
0.0771
 
< 0.1%
0.0835
 
0.1%
0.0915
 
0.1%
0.111
 
0.1%
0.11135
 
0.4%
0.1181
 
< 0.1%
0.12545
 
0.4%
0.14374
 
0.7%
ValueCountFrequency (%)
1138
1.4%
0.9172
 
< 0.1%
0.9092
 
< 0.1%
0.98
 
0.1%
0.8898
 
0.1%
0.87521
 
0.2%
0.85717
 
0.2%
0.8463
 
< 0.1%
0.83348
 
0.5%
0.8261
 
< 0.1%

3P
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct12
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.9632
Minimum0
Maximum11
Zeros5276
Zeros (%)52.8%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.337843image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q32
95-th percentile4
Maximum11
Range11
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.347229477
Coefficient of variation (CV)1.398701699
Kurtosis3.861992856
Mean0.9632
Median Absolute Deviation (MAD)0
Skewness1.757809527
Sum9632
Variance1.815027263
MonotonicityNot monotonic
2021-11-14T15:13:59.390006image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=12)
ValueCountFrequency (%)
05276
52.8%
12108
 
21.1%
21319
 
13.2%
3716
 
7.2%
4332
 
3.3%
5152
 
1.5%
660
 
0.6%
721
 
0.2%
88
 
0.1%
103
 
< 0.1%
Other values (2)5
 
0.1%
ValueCountFrequency (%)
05276
52.8%
12108
 
21.1%
21319
 
13.2%
3716
 
7.2%
4332
 
3.3%
5152
 
1.5%
660
 
0.6%
721
 
0.2%
88
 
0.1%
93
 
< 0.1%
ValueCountFrequency (%)
112
 
< 0.1%
103
 
< 0.1%
93
 
< 0.1%
88
 
0.1%
721
 
0.2%
660
 
0.6%
5152
 
1.5%
4332
 
3.3%
3716
7.2%
21319
13.2%

3PA
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct21
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2.6652
Minimum0
Maximum23
Zeros3271
Zeros (%)32.7%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.447957image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median2
Q34
95-th percentile8
Maximum23
Range23
Interquartile range (IQR)4

Descriptive statistics

Standard deviation2.807044159
Coefficient of variation (CV)1.053220831
Kurtosis1.490519143
Mean2.6652
Median Absolute Deviation (MAD)2
Skewness1.163980237
Sum26652
Variance7.87949691
MonotonicityNot monotonic
2021-11-14T15:13:59.501692image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=21)
ValueCountFrequency (%)
03271
32.7%
11165
 
11.7%
21143
 
11.4%
31086
 
10.9%
4948
 
9.5%
5791
 
7.9%
6563
 
5.6%
7402
 
4.0%
8230
 
2.3%
9168
 
1.7%
Other values (11)233
 
2.3%
ValueCountFrequency (%)
03271
32.7%
11165
 
11.7%
21143
 
11.4%
31086
 
10.9%
4948
 
9.5%
5791
 
7.9%
6563
 
5.6%
7402
 
4.0%
8230
 
2.3%
9168
 
1.7%
ValueCountFrequency (%)
231
 
< 0.1%
191
 
< 0.1%
181
 
< 0.1%
175
 
0.1%
164
 
< 0.1%
158
 
0.1%
147
 
0.1%
1315
 
0.1%
1231
0.3%
1158
0.6%

3P%
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
MISSING
ZEROS

Distinct59
Distinct (%)0.9%
Missing3271
Missing (%)32.7%
Infinite0
Infinite (%)0.0%
Mean0.335314757
Minimum0
Maximum1
Zeros2005
Zeros (%)20.1%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.569042image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0.333
Q30.5
95-th percentile1
Maximum1
Range1
Interquartile range (IQR)0.5

Descriptive statistics

Standard deviation0.2912918169
Coefficient of variation (CV)0.8687115936
Kurtosis-0.3312145063
Mean0.335314757
Median Absolute Deviation (MAD)0.19
Skewness0.5792468877
Sum2256.333
Variance0.08485092261
MonotonicityNot monotonic
2021-11-14T15:13:59.645141image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02005
20.1%
0.51030
 
10.3%
0.333725
 
7.2%
1461
 
4.6%
0.25433
 
4.3%
0.667316
 
3.2%
0.4277
 
2.8%
0.2268
 
2.7%
0.6180
 
1.8%
0.429126
 
1.3%
Other values (49)908
 
9.1%
(Missing)3271
32.7%
ValueCountFrequency (%)
02005
20.1%
0.0913
 
< 0.1%
0.17
 
0.1%
0.1119
 
0.1%
0.12520
 
0.2%
0.1331
 
< 0.1%
0.14350
 
0.5%
0.167111
 
1.1%
0.1825
 
0.1%
0.2268
 
2.7%
ValueCountFrequency (%)
1461
4.6%
0.91
 
< 0.1%
0.8751
 
< 0.1%
0.8574
 
< 0.1%
0.83322
 
0.2%
0.840
 
0.4%
0.7782
 
< 0.1%
0.75103
 
1.0%
0.7271
 
< 0.1%
0.71429
 
0.3%

FT
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct22
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2.5307
Minimum0
Maximum22
Zeros3043
Zeros (%)30.4%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.714165image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median2
Q34
95-th percentile8
Maximum22
Range22
Interquartile range (IQR)4

Descriptive statistics

Standard deviation2.780868719
Coefficient of variation (CV)1.098853566
Kurtosis3.251477551
Mean2.5307
Median Absolute Deviation (MAD)2
Skewness1.568339821
Sum25307
Variance7.733230833
MonotonicityNot monotonic
2021-11-14T15:13:59.769890image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=22)
ValueCountFrequency (%)
03043
30.4%
21747
17.5%
11353
13.5%
31014
 
10.1%
4897
 
9.0%
5580
 
5.8%
6457
 
4.6%
7285
 
2.9%
8201
 
2.0%
9143
 
1.4%
Other values (12)280
 
2.8%
ValueCountFrequency (%)
03043
30.4%
11353
13.5%
21747
17.5%
31014
 
10.1%
4897
 
9.0%
5580
 
5.8%
6457
 
4.6%
7285
 
2.9%
8201
 
2.0%
9143
 
1.4%
ValueCountFrequency (%)
221
 
< 0.1%
211
 
< 0.1%
202
 
< 0.1%
183
 
< 0.1%
176
 
0.1%
169
 
0.1%
159
 
0.1%
1417
0.2%
1326
0.3%
1238
0.4%

FTA
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct25
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean3.2976
Minimum0
Maximum24
Zeros2680
Zeros (%)26.8%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.831775image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median2
Q35
95-th percentile10
Maximum24
Range24
Interquartile range (IQR)5

Descriptive statistics

Standard deviation3.364515751
Coefficient of variation (CV)1.020292258
Kurtosis2.614508322
Mean3.2976
Median Absolute Deviation (MAD)2
Skewness1.430500405
Sum32976
Variance11.31996624
MonotonicityNot monotonic
2021-11-14T15:13:59.891334image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=25)
ValueCountFrequency (%)
02680
26.8%
22114
21.1%
41306
13.1%
6715
 
7.1%
3654
 
6.5%
1551
 
5.5%
5494
 
4.9%
8365
 
3.6%
7344
 
3.4%
9188
 
1.9%
Other values (15)589
 
5.9%
ValueCountFrequency (%)
02680
26.8%
1551
 
5.5%
22114
21.1%
3654
 
6.5%
41306
13.1%
5494
 
4.9%
6715
 
7.1%
7344
 
3.4%
8365
 
3.6%
9188
 
1.9%
ValueCountFrequency (%)
242
 
< 0.1%
231
 
< 0.1%
222
 
< 0.1%
211
 
< 0.1%
206
 
0.1%
197
 
0.1%
1811
 
0.1%
1717
0.2%
1617
0.2%
1531
0.3%

FT%
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct79
Distinct (%)1.1%
Missing2680
Missing (%)26.8%
Infinite0
Infinite (%)0.0%
Mean0.754097541
Minimum0
Maximum1
Zeros363
Zeros (%)3.6%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:13:59.962093image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0.167
Q10.5
median0.8
Q31
95-th percentile1
Maximum1
Range1
Interquartile range (IQR)0.5

Descriptive statistics

Standard deviation0.2714031396
Coefficient of variation (CV)0.3599045546
Kurtosis0.6687269877
Mean0.754097541
Median Absolute Deviation (MAD)0.2
Skewness-1.086776978
Sum5519.994
Variance0.07365966421
MonotonicityNot monotonic
2021-11-14T15:14:00.037223image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
12911
29.1%
0.51180
11.8%
0.75608
 
6.1%
0.667454
 
4.5%
0363
 
3.6%
0.833260
 
2.6%
0.8221
 
2.2%
0.333124
 
1.2%
0.857122
 
1.2%
0.6121
 
1.2%
Other values (69)956
 
9.6%
(Missing)2680
26.8%
ValueCountFrequency (%)
0363
3.6%
0.1431
 
< 0.1%
0.1674
 
< 0.1%
0.1881
 
< 0.1%
0.210
 
0.1%
0.2221
 
< 0.1%
0.2573
 
0.7%
0.2732
 
< 0.1%
0.2869
 
0.1%
0.31
 
< 0.1%
ValueCountFrequency (%)
12911
29.1%
0.9521
 
< 0.1%
0.9444
 
< 0.1%
0.9413
 
< 0.1%
0.9381
 
< 0.1%
0.9334
 
< 0.1%
0.9291
 
< 0.1%
0.9238
 
0.1%
0.91720
 
0.2%
0.90933
 
0.3%

ORB
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct13
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.4014
Minimum0
Maximum12
Zeros3669
Zeros (%)36.7%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.103534image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1
Q32
95-th percentile5
Maximum12
Range12
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.618066703
Coefficient of variation (CV)1.154607323
Kurtosis3.447051684
Mean1.4014
Median Absolute Deviation (MAD)1
Skewness1.629560505
Sum14014
Variance2.618139854
MonotonicityNot monotonic
2021-11-14T15:14:00.160417image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=13)
ValueCountFrequency (%)
03669
36.7%
12709
27.1%
21660
16.6%
3942
 
9.4%
4465
 
4.7%
5285
 
2.9%
6138
 
1.4%
760
 
0.6%
843
 
0.4%
915
 
0.1%
Other values (3)14
 
0.1%
ValueCountFrequency (%)
03669
36.7%
12709
27.1%
21660
16.6%
3942
 
9.4%
4465
 
4.7%
5285
 
2.9%
6138
 
1.4%
760
 
0.6%
843
 
0.4%
915
 
0.1%
ValueCountFrequency (%)
122
 
< 0.1%
113
 
< 0.1%
109
 
0.1%
915
 
0.1%
843
 
0.4%
760
 
0.6%
6138
 
1.4%
5285
 
2.9%
4465
4.7%
3942
9.4%

DRB
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct21
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean4.1311
Minimum0
Maximum22
Zeros521
Zeros (%)5.2%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.221414image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q12
median4
Q36
95-th percentile10
Maximum22
Range22
Interquartile range (IQR)4

Descriptive statistics

Standard deviation2.889523789
Coefficient of variation (CV)0.699456268
Kurtosis1.393469635
Mean4.1311
Median Absolute Deviation (MAD)2
Skewness1.059629781
Sum41311
Variance8.349347725
MonotonicityNot monotonic
2021-11-14T15:14:00.278641image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=21)
ValueCountFrequency (%)
31586
15.9%
21536
15.4%
41383
13.8%
11222
12.2%
51117
11.2%
6815
8.2%
7565
 
5.7%
0521
 
5.2%
8393
 
3.9%
9310
 
3.1%
Other values (11)552
 
5.5%
ValueCountFrequency (%)
0521
 
5.2%
11222
12.2%
21536
15.4%
31586
15.9%
41383
13.8%
51117
11.2%
6815
8.2%
7565
 
5.7%
8393
 
3.9%
9310
 
3.1%
ValueCountFrequency (%)
221
 
< 0.1%
201
 
< 0.1%
184
 
< 0.1%
177
 
0.1%
169
 
0.1%
1517
 
0.2%
1429
 
0.3%
1366
0.7%
1284
0.8%
11119
1.2%

TRB
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct27
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5.5325
Minimum0
Maximum30
Zeros294
Zeros (%)2.9%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.339774image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q13
median5
Q37
95-th percentile13
Maximum30
Range30
Interquartile range (IQR)4

Descriptive statistics

Standard deviation3.757040762
Coefficient of variation (CV)0.6790855421
Kurtosis1.530422009
Mean5.5325
Median Absolute Deviation (MAD)2
Skewness1.097718028
Sum55325
Variance14.11535529
MonotonicityNot monotonic
2021-11-14T15:14:00.400240image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=27)
ValueCountFrequency (%)
41265
12.7%
31224
12.2%
51135
11.3%
21120
11.2%
6951
9.5%
7790
7.9%
1761
7.6%
8556
5.6%
10431
 
4.3%
9405
 
4.0%
Other values (17)1362
13.6%
ValueCountFrequency (%)
0294
 
2.9%
1761
7.6%
21120
11.2%
31224
12.2%
41265
12.7%
51135
11.3%
6951
9.5%
7790
7.9%
8556
5.6%
9405
 
4.0%
ValueCountFrequency (%)
301
 
< 0.1%
291
 
< 0.1%
262
 
< 0.1%
243
 
< 0.1%
225
 
0.1%
214
 
< 0.1%
2014
 
0.1%
1918
 
0.2%
1832
0.3%
1751
0.5%

AST
Real number (ℝ≥0)

HIGH CORRELATION
ZEROS

Distinct23
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean3.0906
Minimum0
Maximum24
Zeros1643
Zeros (%)16.4%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.466497image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median2
Q34
95-th percentile9
Maximum24
Range24
Interquartile range (IQR)3

Descriptive statistics

Standard deviation2.890610178
Coefficient of variation (CV)0.9352909397
Kurtosis2.407713962
Mean3.0906
Median Absolute Deviation (MAD)2
Skewness1.390017319
Sum30906
Variance8.355627203
MonotonicityNot monotonic
2021-11-14T15:14:00.526585image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=23)
ValueCountFrequency (%)
11960
19.6%
21663
16.6%
01643
16.4%
31310
13.1%
4963
9.6%
5677
 
6.8%
6515
 
5.1%
7377
 
3.8%
8304
 
3.0%
9207
 
2.1%
Other values (13)381
 
3.8%
ValueCountFrequency (%)
01643
16.4%
11960
19.6%
21663
16.6%
31310
13.1%
4963
9.6%
5677
 
6.8%
6515
 
5.1%
7377
 
3.8%
8304
 
3.0%
9207
 
2.1%
ValueCountFrequency (%)
241
 
< 0.1%
212
 
< 0.1%
201
 
< 0.1%
192
 
< 0.1%
181
 
< 0.1%
175
 
0.1%
168
 
0.1%
1512
 
0.1%
1422
0.2%
1340
0.4%

STL
Real number (ℝ≥0)

ZEROS

Distinct10
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.9905
Minimum0
Maximum10
Zeros4128
Zeros (%)41.3%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.585878image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1
Q32
95-th percentile3
Maximum10
Range10
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.105138852
Coefficient of variation (CV)1.115738367
Kurtosis2.366148327
Mean0.9905
Median Absolute Deviation (MAD)1
Skewness1.324729184
Sum9905
Variance1.221331883
MonotonicityNot monotonic
2021-11-14T15:14:00.639940image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%)
04128
41.3%
13232
32.3%
21692
16.9%
3633
 
6.3%
4223
 
2.2%
566
 
0.7%
619
 
0.2%
74
 
< 0.1%
82
 
< 0.1%
101
 
< 0.1%
ValueCountFrequency (%)
04128
41.3%
13232
32.3%
21692
16.9%
3633
 
6.3%
4223
 
2.2%
566
 
0.7%
619
 
0.2%
74
 
< 0.1%
82
 
< 0.1%
101
 
< 0.1%
ValueCountFrequency (%)
101
 
< 0.1%
82
 
< 0.1%
74
 
< 0.1%
619
 
0.2%
566
 
0.7%
4223
 
2.2%
3633
 
6.3%
21692
16.9%
13232
32.3%
04128
41.3%

BLK
Real number (ℝ≥0)

HIGH CORRELATION
ZEROS

Distinct11
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.6375
Minimum0
Maximum10
Zeros6081
Zeros (%)60.8%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:00.698156image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q31
95-th percentile3
Maximum10
Range10
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.029174266
Coefficient of variation (CV)1.614391006
Kurtosis8.168555537
Mean0.6375
Median Absolute Deviation (MAD)0
Skewness2.36131449
Sum6375
Variance1.05919967
MonotonicityNot monotonic
2021-11-14T15:14:00.752053image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=11)
ValueCountFrequency (%)
06081
60.8%
12446
24.5%
2896
 
9.0%
3343
 
3.4%
4131
 
1.3%
563
 
0.6%
626
 
0.3%
77
 
0.1%
94
 
< 0.1%
102
 
< 0.1%
ValueCountFrequency (%)
06081
60.8%
12446
24.5%
2896
 
9.0%
3343
 
3.4%
4131
 
1.3%
563
 
0.6%
626
 
0.3%
77
 
0.1%
81
 
< 0.1%
94
 
< 0.1%
ValueCountFrequency (%)
102
 
< 0.1%
94
 
< 0.1%
81
 
< 0.1%
77
 
0.1%
626
 
0.3%
563
 
0.6%
4131
 
1.3%
3343
 
3.4%
2896
 
9.0%
12446
24.5%

TOV
Real number (ℝ≥0)

ZEROS

Distinct12
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.8336
Minimum0
Maximum11
Zeros1993
Zeros (%)19.9%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:01.012476image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median2
Q33
95-th percentile5
Maximum11
Range11
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.535625884
Coefficient of variation (CV)0.8374923013
Kurtosis1.343992725
Mean1.8336
Median Absolute Deviation (MAD)1
Skewness1.019648821
Sum18336
Variance2.358146855
MonotonicityNot monotonic
2021-11-14T15:14:01.065019image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=12)
ValueCountFrequency (%)
12858
28.6%
22316
23.2%
01993
19.9%
31451
14.5%
4798
 
8.0%
5354
 
3.5%
6132
 
1.3%
764
 
0.6%
821
 
0.2%
98
 
0.1%
Other values (2)5
 
0.1%
ValueCountFrequency (%)
01993
19.9%
12858
28.6%
22316
23.2%
31451
14.5%
4798
 
8.0%
5354
 
3.5%
6132
 
1.3%
764
 
0.6%
821
 
0.2%
98
 
0.1%
ValueCountFrequency (%)
111
 
< 0.1%
104
 
< 0.1%
98
 
0.1%
821
 
0.2%
764
 
0.6%
6132
 
1.3%
5354
 
3.5%
4798
 
8.0%
31451
14.5%
22316
23.2%

PF
Real number (ℝ≥0)

ZEROS

Distinct7
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2.4527
Minimum0
Maximum6
Zeros906
Zeros (%)9.1%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:01.119675image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q11
median2
Q33
95-th percentile5
Maximum6
Range6
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.471862544
Coefficient of variation (CV)0.6000988885
Kurtosis-0.5869261602
Mean2.4527
Median Absolute Deviation (MAD)1
Skewness0.2386265296
Sum24527
Variance2.166379348
MonotonicityNot monotonic
2021-11-14T15:14:01.168621image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=7)
ValueCountFrequency (%)
22472
24.7%
32236
22.4%
11938
19.4%
41501
15.0%
0906
 
9.1%
5749
 
7.5%
6198
 
2.0%
ValueCountFrequency (%)
0906
 
9.1%
11938
19.4%
22472
24.7%
32236
22.4%
41501
15.0%
5749
 
7.5%
6198
 
2.0%
ValueCountFrequency (%)
6198
 
2.0%
5749
 
7.5%
41501
15.0%
32236
22.4%
22472
24.7%
11938
19.4%
0906
 
9.1%

PTS
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct57
Distinct (%)0.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean13.7209
Minimum0
Maximum60
Zeros255
Zeros (%)2.5%
Negative0
Negative (%)0.0%
Memory size78.2 KiB
2021-11-14T15:14:01.235444image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile2
Q17
median13
Q319
95-th percentile29
Maximum60
Range60
Interquartile range (IQR)12

Descriptive statistics

Standard deviation8.386586712
Coefficient of variation (CV)0.611227158
Kurtosis0.7686638001
Mean13.7209
Median Absolute Deviation (MAD)6
Skewness0.7692020791
Sum137209
Variance70.33483667
MonotonicityNot monotonic
2021-11-14T15:14:01.306390image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
6525
 
5.2%
8522
 
5.2%
10519
 
5.2%
12500
 
5.0%
14483
 
4.8%
11457
 
4.6%
9436
 
4.4%
4431
 
4.3%
13418
 
4.2%
15413
 
4.1%
Other values (47)5296
53.0%
ValueCountFrequency (%)
0255
2.5%
135
 
0.4%
2387
3.9%
3197
 
2.0%
4431
4.3%
5319
3.2%
6525
5.2%
7365
3.6%
8522
5.2%
9436
4.4%
ValueCountFrequency (%)
601
 
< 0.1%
572
< 0.1%
551
 
< 0.1%
541
 
< 0.1%
521
 
< 0.1%
513
< 0.1%
502
< 0.1%
491
 
< 0.1%
482
< 0.1%
473
< 0.1%

GAME_SCORE
Real number (ℝ)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct436
Distinct (%)4.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean10.66643
Minimum-8.3
Maximum52.4
Zeros27
Zeros (%)0.3%
Negative545
Negative (%)5.5%
Memory size78.2 KiB
2021-11-14T15:14:01.379225image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum-8.3
5-th percentile-0.2
Q15.1
median9.8
Q315.4
95-th percentile24.3
Maximum52.4
Range60.7
Interquartile range (IQR)10.3

Descriptive statistics

Standard deviation7.640758612
Coefficient of variation (CV)0.7163370136
Kurtosis0.5257829089
Mean10.66643
Median Absolute Deviation (MAD)5.1
Skewness0.6431959966
Sum106664.3
Variance58.38119217
MonotonicityNot monotonic
2021-11-14T15:14:01.451083image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
7.267
 
0.7%
8.966
 
0.7%
9.865
 
0.7%
964
 
0.6%
6.761
 
0.6%
9.260
 
0.6%
10.160
 
0.6%
6.360
 
0.6%
9.960
 
0.6%
9.460
 
0.6%
Other values (426)9377
93.8%
ValueCountFrequency (%)
-8.31
 
< 0.1%
-8.21
 
< 0.1%
-7.81
 
< 0.1%
-6.62
< 0.1%
-6.51
 
< 0.1%
-6.21
 
< 0.1%
-5.81
 
< 0.1%
-5.61
 
< 0.1%
-5.53
< 0.1%
-5.42
< 0.1%
ValueCountFrequency (%)
52.41
< 0.1%
47.51
< 0.1%
45.91
< 0.1%
44.82
< 0.1%
44.71
< 0.1%
43.81
< 0.1%
43.21
< 0.1%
42.91
< 0.1%
41.82
< 0.1%
40.51
< 0.1%

+/-
Real number (ℝ)

HIGH CORRELATION
ZEROS

Distinct87
Distinct (%)0.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.3717
Minimum-41
Maximum50
Zeros346
Zeros (%)3.5%
Negative4783
Negative (%)47.8%
Memory size78.2 KiB
2021-11-14T15:14:01.530088image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Quantile statistics

Minimum-41
5-th percentile-19
Q1-8
median0
Q39
95-th percentile21
Maximum50
Range91
Interquartile range (IQR)17

Descriptive statistics

Standard deviation12.18752611
Coefficient of variation (CV)32.78860939
Kurtosis-0.05436422127
Mean0.3717
Median Absolute Deviation (MAD)8
Skewness0.0876015207
Sum3717
Variance148.5357927
MonotonicityNot monotonic
2021-11-14T15:14:01.601099image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0346
 
3.5%
-3326
 
3.3%
-2326
 
3.3%
4325
 
3.2%
1316
 
3.2%
2316
 
3.2%
-6315
 
3.1%
-4314
 
3.1%
3305
 
3.0%
-1305
 
3.0%
Other values (77)6806
68.1%
ValueCountFrequency (%)
-412
 
< 0.1%
-403
 
< 0.1%
-391
 
< 0.1%
-382
 
< 0.1%
-372
 
< 0.1%
-363
 
< 0.1%
-351
 
< 0.1%
-344
 
< 0.1%
-334
 
< 0.1%
-3212
0.1%
ValueCountFrequency (%)
501
 
< 0.1%
481
 
< 0.1%
471
 
< 0.1%
441
 
< 0.1%
432
 
< 0.1%
412
 
< 0.1%
401
 
< 0.1%
384
< 0.1%
375
0.1%
363
< 0.1%

Player
Categorical

HIGH CARDINALITY

Distinct1035
Distinct (%)10.3%
Missing0
Missing (%)0.0%
Memory size78.2 KiB
Paul Pierce
 
59
Tim Duncan
 
56
Joe Johnson
 
55
Pau Gasol
 
55
Ben Wallace
 
51
Other values (1030)
9724 

Length

Max length24
Median length12
Mean length12.7175
Min length8

Characters and Unicode

Total characters0
Distinct characters0
Distinct categories0 ?
Distinct scripts0 ?
Distinct blocks0 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique186 ?
Unique (%)1.9%

Sample

1st rowRaja Bell
2nd rowKevin Garnett
3rd rowStephen Curry
4th rowAntonio McDyess
5th rowMiles Plumlee

Common Values

ValueCountFrequency (%)
Paul Pierce59
 
0.6%
Tim Duncan56
 
0.6%
Joe Johnson55
 
0.5%
Pau Gasol55
 
0.5%
Ben Wallace51
 
0.5%
Stephen Curry50
 
0.5%
Kevin Garnett50
 
0.5%
Andre Miller49
 
0.5%
LeBron James48
 
0.5%
Rasheed Wallace47
 
0.5%
Other values (1025)9480
94.8%

Length

2021-11-14T15:14:01.677694image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
williams169
 
0.8%
kevin169
 
0.8%
chris158
 
0.8%
paul144
 
0.7%
james139
 
0.7%
johnson139
 
0.7%
allen132
 
0.7%
miller127
 
0.6%
jason126
 
0.6%
andre125
 
0.6%
Other values (1363)18629
92.9%

Most occurring characters

ValueCountFrequency (%)
No values found.

Most occurring categories

ValueCountFrequency (%)
No values found.

Most frequent character per category

Most occurring scripts

ValueCountFrequency (%)
No values found.

Most frequent character per script

Most occurring blocks

ValueCountFrequency (%)
No values found.

Most frequent character per block

Interactions

2021-11-14T15:13:55.758183image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.627725image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.965427image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.525669image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.932179image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.296617image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.649048image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.172497image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.524032image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.841531image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.222198image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.796215image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.160434image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.493374image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.861194image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.396786image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.732766image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.068758image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.610184image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.977339image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.358800image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.818697image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.693003image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.025168image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.590264image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.993795image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.358257image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.711482image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.234987image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.583928image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.906040image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.291536image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.859200image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.220532image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.555772image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.923326image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.458402image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.794389image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.130265image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.673714image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.040449image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.423062image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.878556image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.755316image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.085085image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.654651image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.058925image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.419238image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.774362image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.296828image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.643967image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.977527image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.354618image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.921769image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.279607image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.617755image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.984257image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.520159image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.855696image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.191728image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.735099image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.103670image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.488286image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.945120image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.823095image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.152512image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.725975image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.127061image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.487857image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.842655image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.364236image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.710308image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.048317image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.423107image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.991939image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.346239image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.687447image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.053234image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.587641image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.922743image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.260151image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.805019image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.174248image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.558254image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.008716image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.886058image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.215583image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.793420image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.192216image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.551647image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.905369image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.428782image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.777454image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.113970image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.489031image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.058046image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.408970image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.753438image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.118155image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.651256image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.987468image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.323821image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.871008image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.240810image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.625730image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.072757image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:27.951514image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.279244image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.859588image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.256252image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.615045image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.967070image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.493190image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.839340image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.177858image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.554552image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.121692image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.470999image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.818544image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.376034image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.714610image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.049849image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.387046image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.935093image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.305834image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.691435image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.133269image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.013706image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.338763image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.923596image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.317834image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.683454image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.027258image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.554430image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.898368image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.238566image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.615823image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.183215image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.531513image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.881607image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.437541image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.775888image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.111454image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.447819image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.998006image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.369029image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.755827image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.197357image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.077379image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.401677image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.992134image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.382656image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.748471image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.091057image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.619201image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.961024image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.302490image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.680024image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.247190image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.599179image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.944642image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.501128image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.839523image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.173909image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.511950image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.063469image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.434884image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.823103image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.257370image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.138418image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.460764image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.056741image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.446681image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.812278image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.151747image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.680885image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.020669image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.363426image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.743548image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.309944image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.659109image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.007413image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.562686image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.899881image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.235121image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.574303image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.126739image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.498586image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.887452image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.320239image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.200980image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.523011image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.123910image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.510531image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.876257image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.214313image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.744744image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.083157image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.427077image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.808291image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.375094image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.738061image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.072491image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.625628image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.964111image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.298553image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.637261image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.191323image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.563401image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.952942image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.383443image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.265015image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.585869image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.191321image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.576601image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.940505image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.277368image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.810350image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.144932image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.491878image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.873885image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.440031image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.801728image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.137894image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.690110image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.028149image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.363013image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.701062image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.257678image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.629399image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.020178image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.448347image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.330683image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.652480image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.260347image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.643081image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.007086image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.342486image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.876284image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.208357image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.558574image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.146969image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.506238image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.865934image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.205353image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.755451image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.093570image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.428187image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.766710image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.324881image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.697172image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.088804image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.509439image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.391098image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.711698image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.324197image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.706063image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.067986image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.402691image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.945093image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.268061image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.619883image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.209461image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.568613image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.926170image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.267794image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.816687image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.154675image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.489865image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.827602image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.388151image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.759879image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.153949image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.577810image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.455202image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.777277image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.392839image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.772568image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.134350image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.466925image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.007341image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.332181image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.685769image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.275901image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.636242image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.990630image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.335441image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.882741image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.219807image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.554770image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.893314image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.454425image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.828255image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.222410image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.640632image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.517835image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.838200image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.459442image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.836035image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.198346image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.529534image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.071493image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.394360image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.749460image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.341138image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.700555image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.052918image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.400515image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:46.946316image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.283081image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.618373image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.956155image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.518947image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.893881image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.288371image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.904353image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.581240image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.899430image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.525710image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.900761image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.261308image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.795200image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.135436image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.456302image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.813176image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.404850image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.764925image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.115292image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.465905image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.009612image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.347181image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.681454image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.018332image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.583078image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:53.959476image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.354275image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:56.966390image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.643546image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:29.963636image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.592018image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:32.965230image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.324086image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.855788image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.196631image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.518731image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.876782image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.469160image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.828768image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.176467image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.530265image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.073696image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.410676image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.744310image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.081053image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.647618image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.024976image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.421092image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:57.028124image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.705768image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.025372image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.659098image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.031593image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.387901image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.918253image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.262317image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.580814image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:39.940877image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.532762image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.894336image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.238367image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.595530image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.137070image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.474431image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.807669image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.145246image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.712148image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.090705image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.488071image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:57.092664image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.770021image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.090740image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.726987image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.098710image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.453528image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:35.983026image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.328582image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.644831image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.006006image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.599322image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:42.962109image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.302441image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.662032image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.203322image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.538727image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.873168image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.214248image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.778592image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.158373image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.556709image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:57.157996image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.835883image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.155765image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.795819image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.164865image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.520062image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.047129image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.395171image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.710116image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.072148image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.666634image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.029779image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.366782image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.730475image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.269185image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.605046image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:49.939604image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.280845image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.846035image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.226835image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.624772image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:57.224390image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:28.903809image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:30.220307image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:31.864747image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:33.233427image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:34.586664image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:36.112597image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:37.462133image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:38.775426image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:40.151278image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:41.734197image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:43.097462image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:44.432525image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:45.798356image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:47.335600image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:48.671351image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:50.006847image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:51.347808image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:52.913982image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:54.295307image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
2021-11-14T15:13:55.694320image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Correlations

2021-11-14T15:14:01.761831image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2021-11-14T15:14:01.903106image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2021-11-14T15:14:02.040805image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2021-11-14T15:14:02.154285image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2021-11-14T15:14:02.241203image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2021-11-14T15:13:57.383480image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
A simple visualization of nullity by column.
2021-11-14T15:13:57.911665image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2021-11-14T15:13:58.063647image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
2021-11-14T15:13:58.149782image/svg+xmlMatplotlib v3.3.4, https://matplotlib.org/
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.

Sample

First rows

df_indexDATEAGETEAMHOME/AWAYOPPONENTRESULTGSMPFGFGAFG%3P3PA3P%FTFTAFT%ORBDRBTRBASTSTLBLKTOVPFPTSGAME_SCORE+/-Player
03242007-02-2730-161PHOAWAYINDW (+11)141:104120.333150.200221.00004431012116.711Raja Bell
19072014-01-3137-257BRKHOMEOKCL (-25)112:14040.00000NaN00NaN011001140-4.4-12Kevin Garnett
2462011-02-0522-328GSWHOMECHIW (+11)144:179150.600240.500331.000156810212322.514Stephen Curry
3882008-02-2233-168DETHOMEMILW (+27)125:227100.70000NaN120.500347311041515.910Antonio McDyess
42792014-11-1526-075PHOAWAYLACL (-13)118:36480.50000NaN00NaN3251000087.4-11Miles Plumlee
5672021-04-2330-356LACAWAYHOUW (+5)133:5510270.3703100.30010101.00021214420733319.7-3Paul George
63932014-02-2827-254UTAAWAYCLEL (-20)126:122100.200130.33300NaN022100105-0.9-2Marvin Williams
71902012-11-2524-029PHIHOMEPHOW (+3)131:564130.308350.600560.833189300231610.12Evan Turner
8172012-03-1021-186WASHOMEPORL (-11)138:009190.47400NaN7100.700134800012520.9-7John Wall
93582015-02-2827-289MILAWAYUTAL (-7)133:514130.308140.250340.75032500013124.6-4Ersan İlyasova

Last rows

df_indexDATEAGETEAMHOME/AWAYOPPONENTRESULTGSMPFGFGAFG%3P3PA3P%FTFTAFT%ORBDRBTRBASTSTLBLKTOVPFPTSGAME_SCORE+/-Player
99903292009-03-0123-007BOSHOMEDETL (-10)131:25270.286010.000441.0000666103486.3-9Rajon Rondo
99911481999-11-0534-091SASAWAYHOUW (+10)134:06470.57100NaN221.0002911013121012.17David Robinson
99922162016-04-0921-046MINAWAYPORW (+1)132:179220.409030.000560.83311210014239.9-8Andrew Wiggins
9993872012-02-1539-133PHOHOMEATLL (-2)137:088110.727120.500120.500066210211814.97Grant Hill
99944382015-12-2328-222DETAWAYATLL (-7)133:01290.222150.20000NaN2571101351.90Ersan İlyasova
999522002-04-1325-353SASAWAYMEMW (+21)130:4512170.706111.000551.00011314724233034.026Tim Duncan
9996522004-12-0429-217INDAWAYGSWL (-8)136:455110.455150.200881.00031114110331916.20Austin Croshere
9997702007-01-2325-017WASHOMEPHOL (-22)139:2911250.440390.333680.750145510243119.9-25Gilbert Arenas
99981782000-12-0821-264SACHOMEHOUW (+13)137:19590.556111.000560.833134103141613.16Hedo Türkoğlu
99994372004-01-2222-310CLEHOMESACL (-6)118:11260.333140.25000NaN1230002050.9-7Kedrick Brown